Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Sep;96(3):678–686. doi: 10.1128/jb.96.3.678-686.1968

Oxidation of d(−) Lactate by the Electron Transport Fraction of Azotobacter vinelandii

Peter Jurtshuk 1, Lahoma Harper 1
PMCID: PMC252359  PMID: 5732503

Abstract

d(−) Lactate oxidation in Azobacter vinelandii strain O is readily carried out by the membrane bound enzyme that concentrates in the electron transport fraction (R3). This oxidation in the R3 fraction is not dependent on externally added nicotinamide adenine dinucleotide, flavine adenine dinucleotide, or flavine mononucleotide. Phenazine methosulfate, O2, and menadione all served as good electron carriers, and the oxidation of lactate was limited to the d(−) stereoisomer. Of all the α-hydroxyacids examined, only d(−) lactate and d(−) α-hydroxybutyrate were oxidized by the R3 fraction. Paper chromatographic studies revealed that the 2,4-dinitrophenylhydrazine derivative formed from d(−) lactate oxidation was pyruvate. Pyruvate, in turn, could be further decarboxylated nonoxidatively by the R3 fraction. Spectral studies revealed that both the R3 flavoprotein and cytochrome (a2, a1, b1, c4, and c5) components were reduced by d(−) lactate. The d(−) lactic oxidase activity was sensitive to electron transport inhibitors, i.e., chlorpromazine, antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide, rotenone, dicumarol, and cyanide, and to a small extent to 4,4,4-trifluoro-1-(2-thienyl)-1,3-butane-dione (TFTB) and Amytal. The d(−) lactic phenazine methosulfate and menadione reductases were sensitive only to dicumarol and TFTB. Chlorpromazine was found to be a highly specific inhibitor of d(−) lactic oxidase activity, 50% inhibition occurring at 6.6 × 10−6m.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEBY C. A., MORTON R. K. Lactic dehydrogenase and cytochrome b2 of baker's yeast; purification and crystallization. Biochem J. 1959 Mar;71(3):492–499. doi: 10.1042/bj0710492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ASNIS R. E., GLICK M. C., VELY V. G. Some enzymatic activities of a particulate fraction from sonic lysates of Escherichia coli. J Bacteriol. 1956 Sep;72(3):314–319. doi: 10.1128/jb.72.3.314-319.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRUEMMER J. H., WILSON P. W., GLENN J. L., CRANE F. L. Electron transporting particle from Azotobacter vinelandii. J Bacteriol. 1957 Jan;73(1):113–116. doi: 10.1128/jb.73.1.113-116.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DE LEY J., SCHEL J. Studies on the metabolism of Acetobacter peroxydans. II. The enzymic mechanism of lactate metabolism. Biochim Biophys Acta. 1959 Sep;35:154–165. doi: 10.1016/0006-3002(59)90344-0. [DOI] [PubMed] [Google Scholar]
  5. EDSON N. L. The intermediary metabolism of the mycobacteria. Bacteriol Rev. 1951 Sep;15(3):147–182. doi: 10.1128/br.15.3.147-182.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EICHEL H. J., REM L. T. Respiratory enzyme studies in Tetrahymena pyriformis. V. Some properties of an L-lactic oxidase. J Biol Chem. 1962 Mar;237:940–945. [PubMed] [Google Scholar]
  7. GREEN M., WILSON P. W. Hydrogenase and nitrogenase in Azotobacter. J Bacteriol. 1953 May;65(5):511–517. doi: 10.1128/jb.65.5.511-517.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GREGOLIN C., SINGER T. P. The D-lactic cytochrome reductase of yeast: its chemical nature, origins, and relation to the respiratory chain. Biochem Biophys Res Commun. 1961 Mar 10;4:189–194. doi: 10.1016/0006-291x(61)90268-6. [DOI] [PubMed] [Google Scholar]
  9. GREGOLIN C., SINGER T. P. The lactic dehydrogenase of yeast. III. D(-)Lactic cytochrome c reductase, a zinc-flavoprotein from aerobic yeast. Biochim Biophys Acta. 1963 Feb 12;67:201–218. doi: 10.1016/0006-3002(63)91818-3. [DOI] [PubMed] [Google Scholar]
  10. GREGOLIN C., SINGER T. P. Zinc-FAD, prosthetic groups of D-lactate cytochrome reductase. Biochim Biophys Acta. 1962 Feb 26;57:410–412. doi: 10.1016/0006-3002(62)91147-2. [DOI] [PubMed] [Google Scholar]
  11. HAUGAARD N. D- and L-lactic acid oxidases of Escherichia coli. Biochim Biophys Acta. 1959 Jan;31(1):66–72. doi: 10.1016/0006-3002(59)90439-1. [DOI] [PubMed] [Google Scholar]
  12. Jones C. W., Redfearn E. R. Electron transport in Azotobacter vinelandii. Biochim Biophys Acta. 1966 Mar 7;113(3):467–481. doi: 10.1016/s0926-6593(66)80005-x. [DOI] [PubMed] [Google Scholar]
  13. Jurtshuk P., Aston P. R., Old L. Enzymatic oxidation of tetramethyl-p-phenylenediamine and p-phenylenediamine by the electron transport particulate fraction of Azotobacter vinelandii. J Bacteriol. 1967 Mar;93(3):1069–1078. doi: 10.1128/jb.93.3.1069-1078.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jurtshuk P., Old L. Cytochrome c oxidation by the electron transport fraction of Azotobacter vinelandii. J Bacteriol. 1968 May;95(5):1790–1797. doi: 10.1128/jb.95.5.1790-1797.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KAUFMANN E., DIKSTEIN S. A D-lactic dehydrogenase from Leuconostoc mesenteroides. Nature. 1961 Apr 22;190:346–346. doi: 10.1038/190346a0. [DOI] [PubMed] [Google Scholar]
  16. LIGHTBOWN J. W., JACKSON F. L. Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem J. 1956 May;63(1):130–137. doi: 10.1042/bj0630130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MARR A. G. Enzyme localization in bacteria. Annu Rev Microbiol. 1960;14:241–260. doi: 10.1146/annurev.mi.14.100160.001325. [DOI] [PubMed] [Google Scholar]
  18. MILLMAN I., YOUMANS G. P. The characterization of the terminal respiratory enzymes of the H37Ra strain of mycobacterium tuberculosis var. hominis. J Bacteriol. 1955 Mar;69(3):320–325. doi: 10.1128/jb.69.3.320-325.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MOLINARI R., LARA F. J. The lactic dehydrogenase of Propionibacterium pentosaceum. Biochem J. 1960 Apr;75:57–65. doi: 10.1042/bj0750057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. NYGAARD A. P. D(-)-Lactic cytochrome c reductase, a flavo-protein from yeast. J Biol Chem. 1961 Mar;236:920–925. [PubMed] [Google Scholar]
  21. NYGAARD A. P. Lactic dehydrogenase of yeast. II. Different forms of the enzyme. Biochim Biophys Acta. 1959 Sep;35:212–216. doi: 10.1016/0006-3002(59)90350-6. [DOI] [PubMed] [Google Scholar]
  22. PASCAL M. C., PICHINOTY F. ST'ER'EOSP'ECIFICIT'E ET BIOSYNTH'ESE DES LACTATE-D'ESHYDROG'ENASES D'AEROBACTER AEROGENES. Biochim Biophys Acta. 1963 Nov 8;77:507–509. doi: 10.1016/0006-3002(63)90530-4. [DOI] [PubMed] [Google Scholar]
  23. Pangborn J., Marr A. G., Robrish S. A. LOCALIZATION OF RESPIRATORY ENZYMES IN INTRACYTOPLASMIC MEMBRANES OF AZOTOBACTER AGILIS. J Bacteriol. 1962 Oct;84(4):669–678. doi: 10.1128/jb.84.4.669-678.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SNOSWELL A. M. OXIDIZED NICOTINAMIDE-ADENINE DINUCLEOTIDE-INDEPENDENT LACTATE DEHYDROGENASES OF LACTOBACILLUS ARABINOSUS 17.5. Biochim Biophys Acta. 1963 Sep 3;77:7–9. doi: 10.1016/0006-3002(63)90464-5. [DOI] [PubMed] [Google Scholar]
  25. STORCK R., WACHSMAN J. T. Enzyme localization in Bacillus megaterium. J Bacteriol. 1957 Jun;73(6):784–790. doi: 10.1128/jb.73.6.784-790.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SUTTON W. B. Mechanism of action and crystallization of lactic oxidative decarboxylase from Mycobacterium phlei. J Biol Chem. 1957 May;226(1):395–405. [PubMed] [Google Scholar]
  27. Saini A. S. Some technical improvements in the paper chromatography of keto acid 2,4-dinitrophenylhydrazones. J Chromatogr. 1967 Feb;26(2):539–541. doi: 10.1016/s0021-9673(01)98923-x. [DOI] [PubMed] [Google Scholar]
  28. Straub F. B. Crystalline lactic dehydrogenase from heart muscle. Biochem J. 1940 Apr;34(4):483–486. doi: 10.1042/bj0340483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TUBBS P. K., GREVILLE G. D. The oxidation of D-alpha-hydroxy acids in animal tissues. Biochem J. 1961 Oct;81:104–114. doi: 10.1042/bj0810104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. WALKER H., EAGON R. G. LACTIC DEHYDROGENASES OF PSEUDOMONAS NATRIEGENS. J Bacteriol. 1964 Jul;88:25–30. doi: 10.1128/jb.88.1.25-30.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WILSON T. G., WILSON P. W. The terminal oxidation system of Azotobacter vinelandii. J Bacteriol. 1955 Jul;70(1):30–34. doi: 10.1128/jb.70.1.30-34.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES