Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Sep;96(3):713–720. doi: 10.1128/jb.96.3.713-720.1968

Immunological Homology Between Crystal and Spore Protein of Bacillus thuringiensis

F P Delafield a,1, H J Somerville a,2, S C Rittenberg a
PMCID: PMC252363  PMID: 4979101

Abstract

Spore suspensions containing about 0.3% crystals and crystal suspensions containing about 0.1% spores were obtained from cultures of Bacillus thuringiensis by extraction with a two-phase system. Both preparations were tested for the presence of contaminating material from vegetative cells and were judged to be clean. Solutions of spore protein were obtained by extracting broken spores with phosphate buffer followed by extraction with either alkali- or urea-mercaptoethanol. The alkali spore or urea spore extracts had the same isoelectric point as crystal protein solubilized with these reagents. An antiserum prepared against alkali crystal solution precipitated alkali or urea spore extracts and crystal solutions but not phosphate spore extracts or extracts of whole cells. Lines of identity between spore and crystal precipitates were observed by using the Ouchterlony double-diffusion technique. Absorption of the antiserum with an excess of urea spore extract caused a disappearance of the precipitin bands originating from the spore protein and the homologous bands from the crystal protein. The results suggest that the crystal and endospore contain one or more common proteins.

Full text

PDF
713

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANGUS T. A. Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata. Can J Microbiol. 1956 Apr;2(2):122–131. doi: 10.1139/m56-017. [DOI] [PubMed] [Google Scholar]
  2. BERGER J. A., MARR A. G. Sonic disruption of spores of Bacillus cereus. J Gen Microbiol. 1960 Feb;22:147–157. doi: 10.1099/00221287-22-1-147. [DOI] [PubMed] [Google Scholar]
  3. Goodman N. S., Gottfried R. J., Rogoff M. H. Biphasic system for separation of spores and crystals of Bacillus thuringiensis. J Bacteriol. 1967 Aug;94(2):485–485. doi: 10.1128/jb.94.2.485-.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HALVORSON H., CHURCH B. Biochemistry of spores of aerobic bacilli with special reference to germination. Bacteriol Rev. 1957 Jun;21(2):112–131. doi: 10.1128/br.21.2.112-131.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HANNAY C. L., FITZ-JAMES P. The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol. 1955 Oct;1(8):694–710. doi: 10.1139/m55-083. [DOI] [PubMed] [Google Scholar]
  6. Heimpel A. M. A critical review of Bacillus thuringiensis var. thuringiensis Berliner and other crystalliferous bacteria. Annu Rev Entomol. 1967;12:287–322. doi: 10.1146/annurev.en.12.010167.001443. [DOI] [PubMed] [Google Scholar]
  7. Holmes K. C., Monro R. E. Studies on the structure of parasporal inclusions from Bacillus thuringiensis. J Mol Biol. 1965 Dec;14(2):572–581. doi: 10.1016/s0022-2836(65)80205-4. [DOI] [PubMed] [Google Scholar]
  8. LABAW L. W. THE STRUCTURE OF BACILLUS THURINGIENSIS BERLINER CRYSTALS. J Ultrastruct Res. 1964 Feb;10:66–75. doi: 10.1016/s0022-5320(64)90021-8. [DOI] [PubMed] [Google Scholar]
  9. LAWRENCE N. L., HALVORSON H. O. Studies on the spores of aerobic bacteria. IV. A heat resistant catalase from spores of Bacillus terminalis. J Bacteriol. 1954 Sep;68(3):334–337. doi: 10.1128/jb.68.3.334-337.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lecadet M. M. La toxine figurée de Bacillus thuringiensis. Technique de séparation et composition en acides aminés. C R Acad Sci Hebd Seances Acad Sci D. 1965 Dec 20;261(25):5693–5696. [PubMed] [Google Scholar]
  12. Lecadet M. M. La toxine figurée de bacillus thuringiensis. Dissolution par action du thioglycolate ou de la cystéine. C R Acad Sci Hebd Seances Acad Sci D. 1966 Jan 3;262(1):195–198. [PubMed] [Google Scholar]
  13. MONRO R. E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis. Biochem J. 1961 Nov;81:225–232. doi: 10.1042/bj0810225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MONRO R. E. Serological studies on the formation of protein parasporal inclusions in Bacillus thuringiensis. J Biophys Biochem Cytol. 1961 Nov;11:321–331. doi: 10.1083/jcb.11.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SACKS L. E., ALDERTON G. Behavior of bacterial spores in aqueous polymer two-phase systems. J Bacteriol. 1961 Sep;82:331–341. doi: 10.1128/jb.82.3.331-341.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SACKS L. E., PERCELL P. B., THOMAS R. S., BAILEY G. F. KINETICS OF DRY RUPTURE OF BACTERIAL SPORES IN THE PRESENCE OF SALT. J Bacteriol. 1964 Apr;87:952–960. doi: 10.1128/jb.87.4.952-960.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Somerville H. J., Delafield F. P., Rittenberg S. C. Biochemical homology between crystal and spore protein of Bacillus thuringiensis. J Bacteriol. 1968 Sep;96(3):721–726. doi: 10.1128/jb.96.3.721-726.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES