Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Sep;96(3):721–726. doi: 10.1128/jb.96.3.721-726.1968

Biochemical Homology Between Crystal and Spore Protein of Bacillus thuringiensis

H J Somerville a,1, F P Delafield a,2, S C Rittenberg a
PMCID: PMC252364  PMID: 5732505

Abstract

The crystalline inclusion of Bacillus thuringiensis, dissolved in 8 m urea containing 10% 2-mercaptoethanol and dialyzed to pH 8.3 to 8.5, was compared with a fraction obtained by the same extraction procedure from spores broken by dry rupture. The two fractions behaved similarly on chromatography with Sephadex G-100 and diethylaminoethyl cellulose. The preparations behaved identically on acrylamide gel electrophoresis at pH 12 and pH 9.5. Further, peptide maps of the two fractions obtained after digestion with trypsin were almost superimposable. Amino acid analyses of the crystal and spore fraction were closely similar; discrepancies are attributed to contamination of the spore extract with small amounts of other proteins. It is concluded that a significant portion of the spore protein is identical with the crystal protein.

Full text

PDF
721

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delafield F. P., Somerville H. J., Rittenberg S. C. Immunological homology between crystal and spore protein of Bacillus thuringiensis. J Bacteriol. 1968 Sep;96(3):713–720. doi: 10.1128/jb.96.3.713-720.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hjertén S., Jerstedt S., Tiselius A. Some aspects of the use of "continuous" and "discontinuous" buffer systems in polyacrylamide gel electrophoresis. Anal Biochem. 1965 May;11(2):219–223. doi: 10.1016/0003-2697(65)90008-4. [DOI] [PubMed] [Google Scholar]
  4. Holmes K. C., Monro R. E. Studies on the structure of parasporal inclusions from Bacillus thuringiensis. J Mol Biol. 1965 Dec;14(2):572–581. doi: 10.1016/s0022-2836(65)80205-4. [DOI] [PubMed] [Google Scholar]
  5. KATZ A. M., DREYER W. J., ANFINSEN C. B. Peptide separation by two-dimensional chromatography and electrophoresis. J Biol Chem. 1959 Nov;234:2897–2900. [PubMed] [Google Scholar]
  6. LABAW L. W. THE STRUCTURE OF BACILLUS THURINGIENSIS BERLINER CRYSTALS. J Ultrastruct Res. 1964 Feb;10:66–75. doi: 10.1016/s0022-5320(64)90021-8. [DOI] [PubMed] [Google Scholar]
  7. LEBOY P. S., COX E. C., FLAKS J. G. THE CHROMOSOMAL SITE SPECIFYING A RIBOSOMAL PROTEIN IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Dec;52:1367–1374. doi: 10.1073/pnas.52.6.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lecadet M. M. La toxine figurée de bacillus thuringiensis. Dissolution par action du thioglycolate ou de la cystéine. C R Acad Sci Hebd Seances Acad Sci D. 1966 Jan 3;262(1):195–198. [PubMed] [Google Scholar]
  10. Martinez R. J., Brown D. M., Glazer A. N. The formation of bacterial flagella. 3. Characterization of the subunits of the flagella of Bacillus subtilis and Spirillum serpens. J Mol Biol. 1967 Aug 28;28(1):45–51. doi: 10.1016/s0022-2836(67)80076-7. [DOI] [PubMed] [Google Scholar]
  11. Sanger F. Fractionation of oxidized insulin. Biochem J. 1949;44(1):126–128. doi: 10.1042/bj0440126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WHITE F. H., Jr, ANFINSEN C. B. Some relationships of structure to function in ribonuclease. Ann N Y Acad Sci. 1959 Sep 4;81:515–523. doi: 10.1111/j.1749-6632.1959.tb49333.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES