Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Sep;96(3):760–767. doi: 10.1128/jb.96.3.760-767.1968

Studies on Microbial Ribonucleic Acid VI. Appearance of Methyl-deficient Transfer Ribonucleic Acid During Logarithmic Growth of Saccharomyces cerevisiae

Kerstin Kjellin-Stråby a, John H Phillips a,1
PMCID: PMC252370  PMID: 5732508

Abstract

Transfer ribonucleic acid (tRNA) that is deficient in methyl groups may be detected in logarithmically growing Saccharomyces cerevisiae. The amount of methyl-deficient tRNA is not constant throughout the logarithmic phase, but is maximal about one generation before the onset of the late growth phase. During this latter phase, the tRNA is fully methylated. The methyl-deficient tRNA is present during a period of high metabolic activity of the cell, characterized by increased RNA and protein content.

Full text

PDF
760

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOMAN H. G., HJERTEN S. "Molecular sieving" of bacterial RNA. Arch Biochem Biophys. 1962 Sep;Suppl 1:276–282. [PubMed] [Google Scholar]
  2. Doi R. H., Kaneko I., Goehler B. Regulation of a serine transfer RNA of Bacillus subtilis under two growth conditions. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1548–1551. doi: 10.1073/pnas.56.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HALVORSON H., FRY W., SCHWEMMIN D. A study of the properties of the free amino acid pool and enzyme synthesis in yeast. J Gen Physiol. 1955 Mar 20;38(4):549–573. doi: 10.1085/jgp.38.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hsu W. T., Foft J. W., Weiss S. B. Effect of bacteriophage infection on the sulfur-labeling of sRNA. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2028–2035. doi: 10.1073/pnas.58.5.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Isaksson L. A., Phillips J. H. Studies on microbial RNA. V. A comparison of the in vivo methylated components of ribosomal RNA from Escherichia coli and Saccharomyces cerevisiae. Biochim Biophys Acta. 1968 Jan 29;155(1):63–71. [PubMed] [Google Scholar]
  6. Kaneko I., Doi R. H. Alteration of valyl-sRNA during sporulation of bacillus subtilis. Proc Natl Acad Sci U S A. 1966 Mar;55(3):564–571. doi: 10.1073/pnas.55.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kano-Sueoka T., Sueoka N. Modification of leucyl-sRNA after bacteriophage infection. J Mol Biol. 1966 Sep;20(1):183–209. doi: 10.1016/0022-2836(66)90124-0. [DOI] [PubMed] [Google Scholar]
  8. Kjellin-Straby K., Boman H. G. Studies on microbial RNA, 3. Formation of submethylated sRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1346–1352. doi: 10.1073/pnas.53.6.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LUCAS J. M., SCHUURS A. H., SIMPSON M. V. A CELL-FREE AMINO ACID-INCORPORATING SYSTEM FROM SACCHAROMYCES CEREVISIAE. VARIATION IN RIBOSOMAL ACTIVITY AND IN RNA SYNTHESIS DURING LOGARITHMIC GROWTH. Biochemistry. 1964 Jul;3:959–967. doi: 10.1021/bi00895a020. [DOI] [PubMed] [Google Scholar]
  10. Lazzarini R. A., Santangelo E. Medium-dependent alteration of lysine transfer ribonucleic acid in sporulating Bacillus subtilis cells. J Bacteriol. 1967 Jul;94(1):125–130. doi: 10.1128/jb.94.1.125-130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Phillips J. H., Kjellin-Stråby K. Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N-2-dimethylguanine in soluble ribonucleic acid. J Mol Biol. 1967 Jun 28;26(3):509–518. doi: 10.1016/0022-2836(67)90318-x. [DOI] [PubMed] [Google Scholar]
  12. Robichon-Szulmajster H., Cherest H. Regulation of homoserine O-transacetylase, first step in methionine biosyntheis in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1967 Jul 21;28(2):256–262. doi: 10.1016/0006-291x(67)90438-x. [DOI] [PubMed] [Google Scholar]
  13. SRINIVASAN P. R., BOREK E. SPECIES VARIATION OF THE RNA METHYLASES. Biochemistry. 1964 May;3:616–619. doi: 10.1021/bi00893a003. [DOI] [PubMed] [Google Scholar]
  14. SVENSSON I., BOMAN H. G., ERIKSSON K. G., KJELLIN K. STUDIES ON MICROBIAL RNA. I. TRANSFER OF METHYL GROUPS FROM METHIONINE TO SOLUBLE RNA FROM ESCHERICHIA COLI. J Mol Biol. 1963 Sep;7:254–271. doi: 10.1016/s0022-2836(63)80006-6. [DOI] [PubMed] [Google Scholar]
  15. Srinivasan P. R., Borek E. Enzymatic alteration of macromolecular structure. Prog Nucleic Acid Res Mol Biol. 1966;5:157–189. doi: 10.1016/s0079-6603(08)60234-2. [DOI] [PubMed] [Google Scholar]
  16. Wainfan E., Srinivasan P. R., Borek E. Alterations in the transfer ribonucleic acid methylases after bacteriophage infection or induction. Biochemistry. 1965 Dec;4(12):2845–2848. doi: 10.1021/bi00888a040. [DOI] [PubMed] [Google Scholar]
  17. Wainfan E., Srinivasan P. R., Borek E. Inhibition of tRNA methylases in lysogenic organisms after induction by ultraviolet irradiation or by heat. J Mol Biol. 1966 Dec 28;22(2):349–353. doi: 10.1016/0022-2836(66)90137-9. [DOI] [PubMed] [Google Scholar]
  18. Waters L. C., Novelli G. D. A new change in leucine transfer RNA observed in Escherichia coli infected with bacteriophage T2. Proc Natl Acad Sci U S A. 1967 Apr;57(4):979–985. doi: 10.1073/pnas.57.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Witt I., Kronau R., Holzer H. Repression von Alkoholdehydrogenase, Malatdehydrogenase, Isocitratlyase und Malatsynthase in Hefe durch Glucose. Biochim Biophys Acta. 1966 Jun 15;118(3):522–537. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES