Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Sep;96(3):768–776. doi: 10.1128/jb.96.3.768-776.1968

Coresistance to Neomycin and Kanamycin by Mutations in an Escherichia coli Locus that Affects Ribosomes

D Apirion 1, D Schlessinger 1
PMCID: PMC252371  PMID: 4895052

Abstract

Mutant strains resistant to neomycin or to kanamycin sulfate were isolated from Escherichia coli K-12. Nine mutants were analyzed; all were resistant to both antibiotics (about 150 and 100 μg/ml, respectively), and were designated nek. In the mutant strains, the ribosomes are changed from those of the parental strain; for when they were used in assays for polypeptide formation directed by polyadenylic acid or polycytidylic acid, coding fidelity in presence of the drugs was increased and inhibition of synthesis by the drugs was lessened. Mating experiments and transduction tests showed that all of the nine nek mutants are either closely linked or allelic, and the nek locus is closely linked to two genes—str (streptomycin) and spc (spectinomycin)—known to affect the 30S ribosome. The two nek mutants tested were recessive to the sensitive, wild-type allele. When the nek mutants were compared to the parental strain, pleiotropic effects of the nek mutations were observed. Resistance to low levels of streptomycin and spectinomycin was increased, whereas resistance to chloramphenicol was decreased. Also, the mutants were less able to adapt to high concentrations of lincomycin, and could no longer show phenotypic suppression of an arginine requirement by neomycin or kanamycin. Such pleiotropic effects are suggested to be the rule for mutations in genes that participate in the biosynthesis of a cellular organelle.

Full text

PDF
768

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apirion D. Altered ribosomes in a suppressor strain of Escherichia coli. J Mol Biol. 1966 Apr;16(2):285–301. doi: 10.1016/s0022-2836(66)80173-0. [DOI] [PubMed] [Google Scholar]
  2. Apirion D., Schlessinger D. The loss of phenotypic suppression in streptomycin-resistant mutants. Proc Natl Acad Sci U S A. 1967 Jul;58(1):206–212. doi: 10.1073/pnas.58.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Apirion D. The two-way selection of mutants and revertants in respect of acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans. Genet Res. 1965 Nov;6(3):317–329. doi: 10.1017/s0016672300004213. [DOI] [PubMed] [Google Scholar]
  4. Apirion D. Three genes that affect Escherichia coli ribosomes. J Mol Biol. 1967 Dec 14;30(2):255–275. [PubMed] [Google Scholar]
  5. COX E. C., WHITE J. R., FLAKS J. G. STREPTOMYCIN ACTION AND THE RIBOSOME. Proc Natl Acad Sci U S A. 1964 Apr;51:703–709. doi: 10.1073/pnas.51.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIES J. E. STUDIES ON THE RIBOSOMES OF STREPTOMYCIN-SENSITIVE AND RESISTANT STRAINS OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Apr;51:659–664. doi: 10.1073/pnas.51.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies J., Anderson P., Davis B. D. Inhibition of protein synthesis by spectinomycin. Science. 1965 Sep 3;149(3688):1096–1098. doi: 10.1126/science.149.3688.1096. [DOI] [PubMed] [Google Scholar]
  8. Fogel S., Sypherd P. S. Chemical basis for heterogeneity of ribosomal proteins. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1329–1336. doi: 10.1073/pnas.59.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorini L., Rosset R., Zimmermann R. A. Phenotype masking and streptomycin dependence. Science. 1967 Sep 15;157(3794):1314–1317. doi: 10.1126/science.157.3794.1314. [DOI] [PubMed] [Google Scholar]
  10. Kwan C. N., Apirion D., Schlessinger D. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Biochemistry. 1968 Jan;7(1):427–433. doi: 10.1021/bi00841a055. [DOI] [PubMed] [Google Scholar]
  11. MAAS W. K., MAAS R., WIAME J. M., GLANSDORFF N. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. I. DOMINANCE OF REPRESSIBILITY IN ZYGOTES. J Mol Biol. 1964 Mar;8:359–364. doi: 10.1016/s0022-2836(64)80199-6. [DOI] [PubMed] [Google Scholar]
  12. Newcombe H. B., Hawirko R. SPONTANEOUS MUTATION TO STREPTOMYCIN RESISTANCE AND DEPENDENCE IN ESCHERICHIA COLI. J Bacteriol. 1949 May;57(5):565–572. doi: 10.1128/jb.57.5.565-572.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Silengo L., Schlessinger D., Mangiarotti G., Apirion D. Induction of mutations to streptomycin and spectinomycin resistance in Escherichia coli by N-methyl-N'-nitroso-N-nitroguanidine and acridine half-mustard ICR-191. Mutat Res. 1967 Sep-Oct;4(5):701–703. doi: 10.1016/0027-5107(67)90056-5. [DOI] [PubMed] [Google Scholar]
  14. TAYLOR A. L., THOMAN M. S. THE GENETIC MAP OF ESCHERICHIA COLI K-12. Genetics. 1964 Oct;50:659–677. doi: 10.1093/genetics/50.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tanaka N., Sashikata K., Nishimura T., Umezawa H. Activity of ribosomes from kanamycin-resistant E. coli. Biochem Biophys Res Commun. 1964 Jun 15;16(3):216–220. doi: 10.1016/0006-291x(64)90328-6. [DOI] [PubMed] [Google Scholar]
  16. Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Traut R. R., Moore P. B., Delius H., Noller H., Tissières A. Ribosomal proteins of Escherichia coli. I. Demonstration of different primary structures. Proc Natl Acad Sci U S A. 1967 May;57(5):1294–1301. doi: 10.1073/pnas.57.5.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Whitfield H. J., Jr, Martin R. G., Ames B. N. Classification of aminotransferase (C gene) mutants in the histidine operon. J Mol Biol. 1966 Nov 14;21(2):335–355. doi: 10.1016/0022-2836(66)90103-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES