Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Oct;96(4):1079–1088. doi: 10.1128/jb.96.4.1079-1088.1968

Flagellar Synthesis in Salmonella typhimurium: Requirement for Ribonucleic Acid Synthesis1

L W Aamodt a,2, J M Eisenstadt a
PMCID: PMC252420  PMID: 4971884

Abstract

The micro-complement-fixation assay has been demonstrated to be a sensitive assay for flagella which occur in nanogram amounts. By use of this assay, it was found that flagellar synthesis occurs during starvation of Salmonella typhimurium for tryptophan, an amino acid not present in flagellar protein. Under these conditions net ribonucleic acid (RNA) synthesis was reduced to approximately 10% of the control rate. Less than 1 μg of actinomycin D per ml further reduced RNA synthesis to less than 1% of the control rate in a culture sensitized by prior treatment for 5 min at 37 C with 5 × 10−4m ethylenediaminetetraacetate in 0.33 m tris(hydroxymethyl)aminomethane-chloride (pH 8.0). In the presence of actinomycin D, no synthesis of flagellar protein could be detected. Analysis of fractions of RNA separated by zone centrifugation indicated that actinomycin D reduces the production of template RNA as well as of ribosomal RNA. This suggests that in S. typhimurium the production of flagellar protein requires the concomitant synthesis of RNA. There is no evidence that a stable messenger RNA specific for flagellar synthesis is present.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON A. I., ROSASDELVALLE M. RNA AND PROTEIN SYNTHESIS REQUIRED FOR BACTERIAL SPORE FORMATION. Biochim Biophys Acta. 1964 Jun 22;87:267–276. doi: 10.1016/0926-6550(64)90222-1. [DOI] [PubMed] [Google Scholar]
  2. BELOZERSKY A. N., SPIRIN A. S. A correlation between the compositions of deoxyribonucleic and ribonucleic acids. Nature. 1958 Jul 12;182(4628):111–112. doi: 10.1038/182111a0. [DOI] [PubMed] [Google Scholar]
  3. BRAWERMAN G., CHARGAFF E. Relation of ribonucleic acid to the photosynthetic apparatus in Euglena gracilis. Biochim Biophys Acta. 1959 Jan;31(1):172–177. doi: 10.1016/0006-3002(59)90453-6. [DOI] [PubMed] [Google Scholar]
  4. COLEMAN G., ELLIOTT W. H. EXTRACELLULAR RIBONUCLEASE FORMATION IN BACILLUS SUBTILIS AND ITS STIMULATION BY ACTINOMYCIN D. Biochem J. 1965 Jun;95:699–706. doi: 10.1042/bj0950699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CREASER E. H. The assimilation of amino acids by bacteria. 22. The effect of 8-azaguanine upon enzyme formation in Staphylococcus aureus. Biochem J. 1956 Nov;64(3):539–545. doi: 10.1042/bj0640539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dimmitt K., Bradford S., Simon M. Synthesis of bacterial flagella. I. Requirement for protein and ribonucleic acid synthesis during flagellar regeneration in Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):801–810. doi: 10.1128/jb.95.3.801-810.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELSON D., GUSTAFSON T., CHARGAFF E. The nucleic acids of the sea-urchin during embryonic development. J Biol Chem. 1954 Jul;209(1):285–294. [PubMed] [Google Scholar]
  8. Eisenstadt J. M., Brawerman G. A factor from Escherichia coli concerned with the stimulation of cell-free polypeptide synthesis by exogenous ribonucleic acid. I. Evidence for the occurrence of a stimulation factor. Biochemistry. 1966 Sep;5(9):2777–2783. doi: 10.1021/bi00873a001. [DOI] [PubMed] [Google Scholar]
  9. GROS F., HIATT H., GILBERT W., KURLAND C. G., RISEBROUGH R. W., WATSON J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May 13;190:581–585. doi: 10.1038/190581a0. [DOI] [PubMed] [Google Scholar]
  10. HARTWELL L. H., MAGASANIK B. THE MECHANISM OF HISTIDASE INDUCTION AND FORMATION IN BACILLUS SUBTILIS. J Mol Biol. 1964 Oct;10:105–119. doi: 10.1016/s0022-2836(64)80031-0. [DOI] [PubMed] [Google Scholar]
  11. Haywood A. M., Harris J. M. Actinomycin inhibition of MS2 replication. J Mol Biol. 1966 Jul;18(3):448–463. doi: 10.1016/s0022-2836(66)80036-0. [DOI] [PubMed] [Google Scholar]
  12. KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
  13. KERRIDGE D., HORNE R. W., GLAUERT A. M. Structural components of flagella from Salmonella typhimurium. J Mol Biol. 1962 Apr;4:227–238. doi: 10.1016/s0022-2836(62)80001-1. [DOI] [PubMed] [Google Scholar]
  14. KERRIDGE D. Synthesis of flagella by amino acid-requiring mutants of Salmonella typhimurium. J Gen Microbiol. 1959 Aug;21:168–179. doi: 10.1099/00221287-21-1-168. [DOI] [PubMed] [Google Scholar]
  15. KERRIDGE D. The effect of inhibitors on the formation of flagella by Salmonella typhimurium. J Gen Microbiol. 1960 Dec;23:519–538. doi: 10.1099/00221287-23-3-519. [DOI] [PubMed] [Google Scholar]
  16. LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MARTINEZ R. J. A METHOD FOR THE PURIFICATION OF BACTERIAL FLAGELLA BY ION EXCHANGE CHROMATOGRAPHY. J Gen Microbiol. 1963 Oct;33:115–120. doi: 10.1099/00221287-33-1-115. [DOI] [PubMed] [Google Scholar]
  19. MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MIDGLEY J. E., McCARTHY B. J. The synthesis and kinetic behavior of deoxyribonucleic acid-like ribonucleic acid in bacteria. Biochim Biophys Acta. 1962 Nov 26;61:696–717. doi: 10.1016/0926-6550(62)90053-1. [DOI] [PubMed] [Google Scholar]
  21. Martinez R. J. The formation of bacterial flagella. II. The relative stability of messenger RNA for flagellin biosynthesis. J Mol Biol. 1966 May;17(1):10–17. doi: 10.1016/s0022-2836(66)80090-6. [DOI] [PubMed] [Google Scholar]
  22. McClatchy J. K., Rickenberg H. V. Heterogeneity of the stability of messenger ribonucleic acid in Salmonella typhimurium. J Bacteriol. 1967 Jan;93(1):115–121. doi: 10.1128/jb.93.1.115-121.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morris D. W., Kjeldgaard N. O. Evidence for the non-co-ordinate regulation of ribonucleic acid synthesis in stringent strains of Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):145–148. doi: 10.1016/0022-2836(68)90064-8. [DOI] [PubMed] [Google Scholar]
  24. POLLOCK M. R. THE DIFFERENTIAL EFFECT OF ACTINOMYCIN D ON THE BIOSYNTHESIS OF ENZYMES IN BACILLUS SUBTILIS AND BACILLUS CEREUS. Biochim Biophys Acta. 1963 Sep 17;76:80–93. [PubMed] [Google Scholar]
  25. Reich E., Goldberg I. H. Actinomycin and nucleic acid function. Prog Nucleic Acid Res Mol Biol. 1964;3:183–234. doi: 10.1016/s0079-6603(08)60742-4. [DOI] [PubMed] [Google Scholar]
  26. STOCKER B. A. Transduction of flagellar characters in Salmonella. J Gen Microbiol. 1953 Dec;9(3):410–433. doi: 10.1099/00221287-9-3-410. [DOI] [PubMed] [Google Scholar]
  27. WASSERMAN E., LEVINE L. Quantitative micro-complement fixation and its use in the study of antigenic structure by specific antigen-antibody inhibition. J Immunol. 1961 Sep;87:290–295. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES