Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1995 May;72(3):F162–F167. doi: 10.1136/fn.72.3.f162

Blood pressure, heart rate, and skin temperature in preterm infants: associations with periventricular haemorrhage.

S W D'Souza 1, H Janakova 1, D Minors 1, R Suri 1, J Waterhouse 1, G Appleton 1, C Ramesh 1, D G Sims 1, M L Chiswick 1
PMCID: PMC2528448  PMID: 7796230

Abstract

The mean arterial blood pressure (MABP), heart rate, and skin temperature were monitored every 15 minutes in the first 10 days after birth in 34 preterm infants, gestational age 24 to 33 weeks. Ultrasound brain scans carried out daily showed that a periventricular haemorrhage (PVH) occurred in a subgroup of infants (n = 15) of lower birthweight and gestational age. In infants without PVH the daily median of MABP increased with birthweight and postnatal age; that of heart rate was not affected by postnatal age, body weight, or gestational age; and that of skin temperature showed a slight fall with postnatal age. In infants with PVH, on or before the day of PVH, daily medians of MABP and skin temperature were not significantly different from those of infants without PVH, but the daily median of heart rate tended to be slightly higher. The percentage of positive correlations between the 96 15 minute values per day for heart rate and MABP increased with postnatal age and with birthweight, but did not differ in infants who developed a PVH. The coefficient of variation (CV) of the 96 15 minute values for MABP tended to be higher in infants on the day of PVH, and a similar trend was apparent on the day before. The processes of development of blood pressure, heart rate, and skin temperature are similar in infants with or without PVH but at lower gestational ages altered blood pressure control may cause brain haemorrhage.

Full text

PDF
F162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bada H. S., Korones S. B., Perry E. H., Arheart K. L., Ray J. D., Pourcyrous M., Magill H. L., Runyan W., 3rd, Somes G. W., Clark F. C. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr. 1990 Oct;117(4):607–614. doi: 10.1016/s0022-3476(05)80700-0. [DOI] [PubMed] [Google Scholar]
  2. Cooke R. W. Factors associated with periventricular haemorrhage in very low birthweight infants. Arch Dis Child. 1981 Jun;56(6):425–431. doi: 10.1136/adc.56.6.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cunningham S., Deere S., McIntosh N. Cyclical variation of blood pressure and heart rate in neonates. Arch Dis Child. 1993 Jul;69(1 Spec No):64–67. doi: 10.1136/adc.69.1_spec_no.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawes G. S., Johnston B. M., Walker D. W. Relationship of arterial pressure and heart rate in fetal, new-born and adult sheep. J Physiol. 1980 Dec;309:405–417. doi: 10.1113/jphysiol.1980.sp013516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dykes F. D., Lazzara A., Ahmann P., Blumenstein B., Schwartz J., Brann A. W. Intraventricular hemorrhage: a prospective evaluation of etiopathogenesis. Pediatrics. 1980 Jul;66(1):42–49. [PubMed] [Google Scholar]
  6. Hambleton G., Wigglesworth J. S. Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child. 1976 Sep;51(9):651–659. doi: 10.1136/adc.51.9.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanson M. A. The importance of baro- and chemoreflexes in the control of the fetal cardiovascular system. J Dev Physiol. 1988 Dec;10(6):491–511. [PubMed] [Google Scholar]
  8. Heymann M. A., Iwamoto H. S., Rudolph A. M. Factors affecting changes in the neonatal systemic circulation. Annu Rev Physiol. 1981;43:371–383. doi: 10.1146/annurev.ph.43.030181.002103. [DOI] [PubMed] [Google Scholar]
  9. Jensen A., Roman C., Rudolph A. M. Effects of reducing uterine blood flow on fetal blood flow distribution and oxygen delivery. J Dev Physiol. 1991 Jun;15(6):309–323. [PubMed] [Google Scholar]
  10. Levene M. I., Fawer C. L., Lamont R. F. Risk factors in the development of intraventricular haemorrhage in the preterm neonate. Arch Dis Child. 1982 Jun;57(6):410–417. doi: 10.1136/adc.57.6.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lou H. C., Lassen N. A., Friis-Hansen B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr. 1979 Jan;94(1):118–121. doi: 10.1016/s0022-3476(79)80373-x. [DOI] [PubMed] [Google Scholar]
  12. Miall-Allen V. M., de Vries L. S., Dubowitz L. M., Whitelaw A. G. Blood pressure fluctuation and intraventricular hemorrhage in the preterm infant of less than 31 weeks' gestation. Pediatrics. 1989 May;83(5):657–661. [PubMed] [Google Scholar]
  13. Miall-Allen V. M., de Vries L. S., Whitelaw A. G. Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child. 1987 Oct;62(10):1068–1069. doi: 10.1136/adc.62.10.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Omar S. Y., Greisen G., Ibrahim M. M., Youssef A. M., Friis-Hansen B. Blood pressure responses to care procedures in ventilated preterm infants. Acta Paediatr Scand. 1985 Nov;74(6):920–924. doi: 10.1111/j.1651-2227.1985.tb10058.x. [DOI] [PubMed] [Google Scholar]
  15. Padbury J. F., Diakomanolis E. S., Hobel C. J., Perelman A., Fisher D. A. Neonatal adaptation: sympatho-adrenal response to umbilical cord cutting. Pediatr Res. 1981 Dec;15(12):1483–1487. doi: 10.1203/00006450-198112000-00005. [DOI] [PubMed] [Google Scholar]
  16. Padbury J. F., Polk D. H., Newnham J. P., Lam R. W. Neonatal adaptation: greater sympathoadrenal response in preterm than full-term fetal sheep at birth. Am J Physiol. 1985 Apr;248(4 Pt 1):E443–E449. doi: 10.1152/ajpendo.1985.248.4.E443. [DOI] [PubMed] [Google Scholar]
  17. Pape K. E. Etiology and pathogenesis of intraventricular hemorrhage in newborns. Pediatrics. 1989 Aug;84(2):382–385. [PubMed] [Google Scholar]
  18. Perlman J. M., McMenamin J. B., Volpe J. J. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. N Engl J Med. 1983 Jul 28;309(4):204–209. doi: 10.1056/NEJM198307283090402. [DOI] [PubMed] [Google Scholar]
  19. Rennie J. M., South M., Morley C. J. Cerebral blood flow velocity variability in infants receiving assisted ventilation. Arch Dis Child. 1987 Dec;62(12):1247–1251. doi: 10.1136/adc.62.12.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Segar J. L., Merrill D. C., Smith B. A., Robillard J. E. Role of sympathetic activity in the generation of heart rate and arterial pressure variability in fetal sheep. Pediatr Res. 1994 Feb;35(2):250–254. doi: 10.1203/00006450-199402000-00026. [DOI] [PubMed] [Google Scholar]
  21. Tweed W. A., Cote J., Pash M., Lou H. Arterial oxygenation determines autoregulation of cerebral blood flow in the fetal lamb. Pediatr Res. 1983 Apr;17(4):246–249. doi: 10.1203/00006450-198304000-00002. [DOI] [PubMed] [Google Scholar]
  22. Watkins A. M., West C. R., Cooke R. W. Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. Early Hum Dev. 1989 May;19(2):103–110. doi: 10.1016/0378-3782(89)90120-5. [DOI] [PubMed] [Google Scholar]
  23. Weindling A. M. Blood pressure monitoring in the newborn. Arch Dis Child. 1989 Apr;64(4 Spec No):444–447. doi: 10.1136/adc.64.4_spec_no.444. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES