Abstract
To test the hypothesis that relative pancreatic dysfunction is a determinant of catch up growth in small for gestational age (SGA) babies, 47 such babies (median gestation 38 weeks; range 27-41) and 41 appropriate for gestational age (AGA) babies matched for sex, race, and gestational age were recruited. Anthropometry was performed within 48 hours of birth and at 6 months. Faecal chymotrypsin activities were measured at 0-2 days, 14 days, 6 weeks and 6 months. At 6 months 30 SGA infants and 25 AGA infants were remeasured. In each group, median stool chymotrypsin activities doubled between 0-2 days and 6 months (9.0-25.5 IU/g SGA group; 11.6-25.3 IU/g AGA group). SGA babies had significantly lower chymotrypsin activities at 14 days (10.9 U/g) than AGA babies (15.5 U/g). In the SGA group faecal chymotrypsin activities at 0-2 days were strongly correlated with both catch up weight and with catch up length when corrected for the effects of birthweight. These data show that impaired pancreatic exocrine function at birth is associated with severe intrauterine malnutrition and with impaired catch up growth during the first 6 months of life.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker D. J. Fetal growth and adult disease. Br J Obstet Gynaecol. 1992 Apr;99(4):275–276. doi: 10.1111/j.1471-0528.1992.tb13719.x. [DOI] [PubMed] [Google Scholar]
- Barker D. J., Meade T. W., Fall C. H., Lee A., Osmond C., Phipps K., Stirling Y. Relation of fetal and infant growth to plasma fibrinogen and factor VII concentrations in adult life. BMJ. 1992 Jan 18;304(6820):148–152. doi: 10.1136/bmj.304.6820.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker D. J. The fetal and infant origins of adult disease. BMJ. 1990 Nov 17;301(6761):1111–1111. doi: 10.1136/bmj.301.6761.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boehm G., Bierbach U., Senger H., Jakobsson I., Minoli I., Moro G., Räihä N. C. Activities of lipase and trypsin in duodenal juice of infants small for gestational age. J Pediatr Gastroenterol Nutr. 1991 Apr;12(3):324–327. doi: 10.1097/00005176-199104000-00006. [DOI] [PubMed] [Google Scholar]
- Brown G. A., Sule D., Williams J., Puntis J. W., Booth I. W., McNeish A. S. Faecal chymotrypsin: a reliable index of exocrine pancreatic function. Arch Dis Child. 1988 Jul;63(7):785–789. doi: 10.1136/adc.63.7.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. P. Growth of "small-for-dates" babies. Early Hum Dev. 1981 Feb;5(1):95–105. doi: 10.1016/0378-3782(81)90075-x. [DOI] [PubMed] [Google Scholar]
- Davies D. P., Platts P., Pritchard J. M., Wilkinson P. W. Nutritional status of light-for-date infants at birth and its influence on early postnatal growth. Arch Dis Child. 1979 Sep;54(9):703–706. doi: 10.1136/adc.54.9.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DelMar E. G., Largman C., Brodrick J. W., Geokas M. C. A sensitive new substrate for chymotrypsin. Anal Biochem. 1979 Nov 1;99(2):316–320. doi: 10.1016/s0003-2697(79)80013-5. [DOI] [PubMed] [Google Scholar]
- Economides D. L., Proudler A., Nicolaides K. H. Plasma insulin in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989 May;160(5 Pt 1):1091–1094. doi: 10.1016/0002-9378(89)90167-1. [DOI] [PubMed] [Google Scholar]
- Excler J. L., Sann L., Lasne Y., Picard J. Anthropometric assessment of nutritional status in newborn infants. Discriminative value of mid arm circumference and of skinfold thickness. Early Hum Dev. 1985 Jul;11(2):169–178. doi: 10.1016/0378-3782(85)90104-5. [DOI] [PubMed] [Google Scholar]
- Gairdner D., Pearson J. A growth chart for premature and other infants. Arch Dis Child. 1971 Dec;46(250):783–787. doi: 10.1136/adc.46.250.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgieff M. K., Sasanow S. R., Mammel M. C., Pereira G. R. Mid-arm circumference/head circumference ratios for identification of symptomatic LGA, AGA, and SGA newborn infants. J Pediatr. 1986 Aug;109(2):316–321. doi: 10.1016/s0022-3476(86)80394-8. [DOI] [PubMed] [Google Scholar]
- Hales C. N., Barker D. J., Clark P. M., Cox L. J., Fall C., Osmond C., Winter P. D. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991 Oct 26;303(6809):1019–1022. doi: 10.1136/bmj.303.6809.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch T. F., Lebenthal E., Krasner J., Branski D. Effect of postnatal malnutrition on pancreatic zymogen enzymes in the rat. Am J Clin Nutr. 1979 Jun;32(6):1224–1230. doi: 10.1093/ajcn/32.6.1224. [DOI] [PubMed] [Google Scholar]
- Kanawati A. A., McLaren D. S. Assessment of marginal malnutrition. Nature. 1970 Nov 7;228(5271):573–575. doi: 10.1038/228573b0. [DOI] [PubMed] [Google Scholar]
- Keen D. V., Pearse R. G. Weight, length, and head circumference curves for boys and girls of between 20 and 42 weeks' gestation. Arch Dis Child. 1988 Oct;63(10 Spec No):1170–1172. doi: 10.1136/adc.63.10_spec_no.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolacek S., Puntis J. W., Lloyd D. R., Brown G. A., Booth I. W. Ontogeny of pancreatic exocrine function. Arch Dis Child. 1990 Feb;65(2):178–181. doi: 10.1136/adc.65.2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo P. L. Glucose gradients of maternal vein-umbilical vein and umbilical vein-umbilical artery in normally grown and growth-retarded fetuses. J Perinat Med. 1991;19(6):421–425. doi: 10.1515/jpme.1991.19.6.421. [DOI] [PubMed] [Google Scholar]
- Lebenthal E., Lee P. C. Development of functional responses in human exocrine pancreas. Pediatrics. 1980 Oct;66(4):556–560. [PubMed] [Google Scholar]
- Lebenthal E., Nitzan M., Chrzanowski B. L., Krantz B. The effect of reduced maternofetal blood flow on the development of fetal pancreatic acinar cells and enzymes. Pediatr Res. 1980 Dec;14(12):1356–1359. doi: 10.1203/00006450-198012000-00018. [DOI] [PubMed] [Google Scholar]
- Lebenthal E., Nitzan M., Lee P. C., Chrzanowski B. L., Krasner J. Effect of intrauterine growth retardation on the activities of fetal intestinal enzymes in rats. Biol Neonate. 1981;39(1-2):14–21. doi: 10.1159/000241387. [DOI] [PubMed] [Google Scholar]
- Lucas A., Cole T. J., Gandy G. M. Birthweight centiles in preterm infants reappraised. Early Hum Dev. 1986 Jun;13(3):313–322. doi: 10.1016/0378-3782(86)90066-6. [DOI] [PubMed] [Google Scholar]
- Lueder F. L., Ogata E. S. Uterine artery ligation in the maternal rat alters fetal tissue glucose utilization. Pediatr Res. 1990 Nov;28(5):464–468. doi: 10.1203/00006450-199011000-00009. [DOI] [PubMed] [Google Scholar]
- Margetts B. M., Rowland M. G., Foord F. A., Cruddas A. M., Cole T. J., Barker D. J. The relation of maternal weight to the blood pressures of Gambian children. Int J Epidemiol. 1991 Dec;20(4):938–943. doi: 10.1093/ije/20.4.938. [DOI] [PubMed] [Google Scholar]
- Nicolini U., Hubinont C., Santolaya J., Fisk N. M., Rodeck C. H. Effects of fetal intravenous glucose challenge in normal and growth retarded fetuses. Horm Metab Res. 1990 Aug;22(8):426–430. doi: 10.1055/s-2007-1004939. [DOI] [PubMed] [Google Scholar]
- Simmons R. A., Gounis A. S., Bangalore S. A., Ogata E. S. Intrauterine growth retardation: fetal glucose transport is diminished in lung but spared in brain. Pediatr Res. 1992 Jan;31(1):59–63. doi: 10.1203/00006450-199201000-00011. [DOI] [PubMed] [Google Scholar]
- Yudkin P. L., Aboualfa M., Eyre J. A., Redman C. W., Wilkinson A. R. New birthweight and head circumference centiles for gestational ages 24 to 42 weeks. Early Hum Dev. 1987 Jan;15(1):45–52. doi: 10.1016/0378-3782(87)90099-5. [DOI] [PubMed] [Google Scholar]