Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1995 Sep;73(2):F81–F86. doi: 10.1136/fn.73.2.f81

Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants.

K E Lundstrøm 1, O Pryds 1, G Greisen 1
PMCID: PMC2528504  PMID: 7583611

Abstract

To determine if the use of oxygen in the delivery room influences subsequent global cerebral blood flow (CBF), 70 infants of gestational age of less than 33 completed weeks were randomly assigned to receive room air (group I) or 80% oxygen (group II) during the initial stabilisation at birth. In group I supplemental oxygen was administered on clinical indications, when required. After being admitted to the neonatal intensive care unit all infants were treated according to our normal practice. At a postnatal age of 2 hours CBF was measured by xenon clearance. Seventy four per cent of the infants in group I were successfully stabilised without the need for supplemental oxygen. CBF was significantly higher in group I than in group II (CBF median (interquartile range): 15.9 (13.6-21.9) v 12.2 (10.7-13.8) ml/100 g/minute). Differences in oxygen exposure seemed to be the only explanation for the differences in CBF. No differences in short term outcome were found between the groups.

Full text

PDF
F81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHTON N., COOK C. Direct observation of the effect of oxygen on developing vessels: preliminary report. Br J Ophthalmol. 1954 Jul;38(7):433–440. doi: 10.1136/bjo.38.7.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altman D. I., Powers W. J., Perlman J. M., Herscovitch P., Volpe S. L., Volpe J. J. Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Ann Neurol. 1988 Aug;24(2):218–226. doi: 10.1002/ana.410240208. [DOI] [PubMed] [Google Scholar]
  3. Deckardt R., Schneider K. T., Graeff H. Monitoring arterial oxygen saturation in the neonate. J Perinat Med. 1987;15(4):357–360. doi: 10.1515/jpme.1987.15.4.357. [DOI] [PubMed] [Google Scholar]
  4. Greisen G. Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand. 1986 Jan;75(1):43–51. doi: 10.1111/j.1651-2227.1986.tb10155.x. [DOI] [PubMed] [Google Scholar]
  5. Greisen G., Pryds O. Intravenous 133Xe clearance in preterm neonates with respiratory distress. Internal validation of CBF infinity as a measure of global cerebral blood flow. Scand J Clin Lab Invest. 1988 Nov;48(7):673–678. doi: 10.1080/00365518809085789. [DOI] [PubMed] [Google Scholar]
  6. Greisen G., Trojaborg W. Cerebral blood flow, PaCO2 changes, and visual evoked potentials in mechanically ventilated, preterm infants. Acta Paediatr Scand. 1987 May;76(3):394–400. doi: 10.1111/j.1651-2227.1987.tb10488.x. [DOI] [PubMed] [Google Scholar]
  7. Harris A. P., Sendak M. J., Donham R. T. Changes in arterial oxygen saturation immediately after birth in the human neonate. J Pediatr. 1986 Jul;109(1):117–119. doi: 10.1016/s0022-3476(86)80589-3. [DOI] [PubMed] [Google Scholar]
  8. House J. T., Schultetus R. R., Gravenstein N. Continuous neonatal evaluation in the delivery room by pulse oximetry. J Clin Monit. 1987 Apr;3(2):96–100. doi: 10.1007/BF00858357. [DOI] [PubMed] [Google Scholar]
  9. Kjaeve J., Vaage J., Bjertnaes L. Toxic oxygen metabolites induce vasoconstriction and bronchoconstriction in isolated, plasma-perfused rat lungs. Acta Anaesthesiol Scand. 1991 Jan;35(1):65–70. doi: 10.1111/j.1399-6576.1991.tb03243.x. [DOI] [PubMed] [Google Scholar]
  10. Leahy F. A., Cates D., MacCallum M., Rigatto H. Effect of CO2 and 100% O2 on cerebral blood flow in preterm infants. J Appl Physiol Respir Environ Exerc Physiol. 1980 Mar;48(3):468–472. doi: 10.1152/jappl.1980.48.3.468. [DOI] [PubMed] [Google Scholar]
  11. Lundstrom K. E., Greisen G. Early treatment with nasal-CPAP. Acta Paediatr. 1993 Oct;82(10):856–856. doi: 10.1111/j.1651-2227.1993.tb17627.x. [DOI] [PubMed] [Google Scholar]
  12. Mellander M., Sabel K. G., Caidahl K., Solymar L., Eriksson B. Doppler determination of cardiac output in infants and children: comparison with simultaneous thermodilution. Pediatr Cardiol. 1987;8(4):241–246. doi: 10.1007/BF02427536. [DOI] [PubMed] [Google Scholar]
  13. Niijima S., Shortland D. B., Levene M. I., Evans D. H. Transient hyperoxia and cerebral blood flow velocity in infants born prematurely and at full term. Arch Dis Child. 1988 Oct;63(10 Spec No):1126–1130. doi: 10.1136/adc.63.10_spec_no.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Obrist W. D., Thompson H. K., Jr, Wang H. S., Wilkinson W. E. Regional cerebral blood flow estimated by 133-xenon inhalation. Stroke. 1975 May-Jun;6(3):245–256. doi: 10.1161/01.str.6.3.245. [DOI] [PubMed] [Google Scholar]
  15. Phelps D. L. Reduced severity of oxygen-induced retinopathy in kittens recovered in 28% oxygen. Pediatr Res. 1988 Jul;24(1):106–109. doi: 10.1203/00006450-198807000-00024. [DOI] [PubMed] [Google Scholar]
  16. Phelps D. L., Rosenbaum A. L. Effects of marginal hypoxemia on recovery from oxygen-induced retinopathy in the kitten model. Pediatrics. 1984 Jan;73(1):1–6. [PubMed] [Google Scholar]
  17. Phillis J. W. Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab Rev. 1989 Spring;1(1):26–54. [PubMed] [Google Scholar]
  18. Pryds O., Andersen G. E., Friis-Hansen B. Cerebral blood flow reactivity in spontaneously breathing, preterm infants shortly after birth. Acta Paediatr Scand. 1990 Apr;79(4):391–396. doi: 10.1111/j.1651-2227.1990.tb11482.x. [DOI] [PubMed] [Google Scholar]
  19. Rahilly P. M. Effects of 2% carbon dioxide, 0.5% carbon dioxide, and 100% oxygen on cranial blood flow of the human neonate. Pediatrics. 1980 Nov;66(5):685–689. [PubMed] [Google Scholar]
  20. Ramji S., Ahuja S., Thirupuram S., Rootwelt T., Rooth G., Saugstad O. D. Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr Res. 1993 Dec;34(6):809–812. doi: 10.1203/00006450-199312000-00023. [DOI] [PubMed] [Google Scholar]
  21. Rootwelt T., Løberg E. M., Moen A., Oyasaeter S., Saugstad O. D. Hypoxemia and reoxygenation with 21% or 100% oxygen in newborn pigs: changes in blood pressure, base deficit, and hypoxanthine and brain morphology. Pediatr Res. 1992 Jul;32(1):107–113. doi: 10.1203/00006450-199207000-00021. [DOI] [PubMed] [Google Scholar]
  22. Stuart M. J., Phelps D. L., Setty B. N. Changes in oxygen tension and effects on cyclooxygenase metabolites: III. Decrease of retinal prostacyclin in kittens exposed to hyperoxia. Pediatrics. 1988 Sep;82(3):367–372. [PubMed] [Google Scholar]
  23. Stuart M. J., Setty Y., Walenga R. W., Graeber J. E., Ganley C. Effects of hyperoxia and hypoxia on vascular prostacyclin formation in vitro. Pediatrics. 1984 Oct;74(4):548–553. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES