Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1988 Jul;62(7):2490–2497. doi: 10.1128/jvi.62.7.2490-2497.1988

Cell-mediated immunity induced in mice after vaccination with a protease activation mutant, TR-2, of Sendai virus.

M Tashiro 1, Y Fujii 1, K Nakamura 1, M Homma 1
PMCID: PMC253408  PMID: 2836627

Abstract

Our previous study has shown that, although a trypsin-resistant mutant of Sendai virus, TR-2, replicates only in a single cycle in mouse lung with a negligible lesion, the animal acquires a strong immunity against lethal infection with wild-type Sendai virus, suggesting that TR-2 could be used as a new type of live vaccine (M. Tashiro and M. Homma, J. Virol. 53:228-234, 1985). In the present study, we investigated the immunological response elicited in TR-2-infected mice, particularly with respect to cell-mediated immunity. Analyses of cytotoxic activities of spleen cells with 51Cr release assays revealed that Sendai virus-specific T lymphocytes (CTL), in addition to natural killer activity and antiviral antibodies, were induced in DBA/2 and C3H/He mice infected intranasally with TR-2. Proteolytic activation of the fusion glycoprotein F was required for the primary induction of CTL, though not necessarily for stimulation of natural killer and antibody responses. Memory of the CTL induced by TR-2 was long-lasting and was recalled in vivo immediately after challenge with wild-type Sendai virus. In contrast to TR-2, immunization with inactive split vaccine failed to induce the CTL response, but it elicited a high titer of serum antibody and a low level of natural killer activity.

Full text

PDF
2490

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abidi T. F., Flanagan T. D. Cell-mediated cytotoxicity against targets bearing Sendai virus glycoproteins in the absence of viral infection. J Virol. 1984 May;50(2):380–386. doi: 10.1128/jvi.50.2.380-386.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alsheikhly A., Orvell C., Härfast B., Andersson T., Perlmann P., Norrby E. Sendai-virus-induced cell-mediated cytotoxicity in vitro. The role of viral glycoproteins in cell-mediated cytotoxicity. Scand J Immunol. 1983 Feb;17(2):129–138. doi: 10.1111/j.1365-3083.1983.tb00775.x. [DOI] [PubMed] [Google Scholar]
  3. Anderson M. J., Bainbridge D. R., Pattison J. R., Heath R. B. Cell-mediated immunity to Sendai virus infection in mice. Infect Immun. 1977 Jan;15(1):239–244. doi: 10.1128/iai.15.1.239-244.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson M. J., Pattison J. R., Cureton R. J., Argent S., Heath R. B. The role of host responses in the recovery of mice from Sendai virus infection. J Gen Virol. 1980 Feb;46(2):373–379. doi: 10.1099/0022-1317-46-2-373. [DOI] [PubMed] [Google Scholar]
  5. Anderson M. J., Pattison J. R., Heath R. B. The nature of the effector cells of cell-mediated immune responses to Sendai and Kunz virus infections in mice. Br J Exp Pathol. 1979 Jun;60(3):314–319. [PMC free article] [PubMed] [Google Scholar]
  6. Anderson M. J. The role of interferon in the NK cell killing of virus-infected target cells. J Hyg (Lond) 1982 Oct;89(2):347–351. doi: 10.1017/s0022172400070881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Appleyard G., Davis G. B. Activation of Sendai virus infectivity by an enzyme in chicken amniotic fluid. J Gen Virol. 1983 Apr;64(Pt 4):813–823. doi: 10.1099/0022-1317-64-4-813. [DOI] [PubMed] [Google Scholar]
  8. Blandford G., Heath R. B. Studies on the immune response and pathogenesis of Sendai virus infection of mice. II. The immunoglobulin class of plasma cells in the bronchial sub-mucosa. Immunology. 1974 Mar;26(3):667–671. [PMC free article] [PubMed] [Google Scholar]
  9. Blandford G. Studies on the immune response and pathogenesis of Sendai virus infection of mice. III. The effects of cyclophosphamide. Immunology. 1975 May;28(5):871–883. [PMC free article] [PubMed] [Google Scholar]
  10. Charlton D., Blandford G. Immunoglobulin class-specific antibody response in serum, spleen, lungs, and bronchoalveolar washings after primary and secondary sendai virus infection of germfree mice. Infect Immun. 1977 Sep;17(3):521–527. doi: 10.1128/iai.17.3.521-527.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doherty P. C., Zinkernagel R. M. Specific immune lysis of paramyxovirus-infected cells by H-2-compatible thymus-derived lymphocytes. Immunology. 1976 Jul;31(1):27–32. [PMC free article] [PubMed] [Google Scholar]
  12. Eaton G. J., Lerro A., Custer R. P., Crane A. R. Eradication of Sendai pneumonitis from a conventional mouse colony. Lab Anim Sci. 1982 Aug;32(4):384–386. [PubMed] [Google Scholar]
  13. Ertl H. C., Brown E. G., Finberg R. W. Sendai virus-specific T cell clones II. Induction of interferon production by Sendai virus-specific T helper cell clones. Eur J Immunol. 1982 Dec;12(12):1051–1053. doi: 10.1002/eji.1830121212. [DOI] [PubMed] [Google Scholar]
  14. Ertl H. C., Finberg R. W. Characteristics and functions of Sendai virus-specific T-cell clones. J Virol. 1984 May;50(2):425–431. doi: 10.1128/jvi.50.2.425-431.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ertl H., Koszinowski U. Cell-mediated cytotoxicity against Sendai-virus-infected cells. Z Immunitatsforsch Immunobiol. 1976 Sep;152(2):128–140. [PubMed] [Google Scholar]
  16. Finberg R., Mescher M., Burakoff S. J. The induction of virus-specific cytotoxic T lymphocytes with solubilized viral and membrane proteins. J Exp Med. 1978 Dec 1;148(6):1620–1627. doi: 10.1084/jem.148.6.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fukami Y., Hosaka Y., Yasuda Y., Bonilla J. A. Difference in capacity of Sendai virus envelope components to induce cytotoxic T lymphocytes in primary and secondary immune responses. Infect Immun. 1979 Dec;26(3):815–821. doi: 10.1128/iai.26.3.815-821.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fukumi H., Takeuchi Y. Vaccination against parainfluenza 1 virus (typus muris) infection in order to eradicate this virus in colonies of laboratory animals. Dev Biol Stand. 1975;28:477–481. [PubMed] [Google Scholar]
  19. Gething M., Koszinowski U., Waterfield M. Fusion of Sendai virus with the target cell membrane is required for T cell cytotoxicity. Nature. 1978 Aug 17;274(5672):689–691. doi: 10.1038/274689a0. [DOI] [PubMed] [Google Scholar]
  20. Guertin D. P., Fan D. P. Stimulation of cytolytic T cells by isolated viral peptides and HN protein coupled to agarose beads. Nature. 1980 Jan 17;283(5744):308–311. doi: 10.1038/283308a0. [DOI] [PubMed] [Google Scholar]
  21. Hale A. H., Lyles D. S., Fan D. P. Elicitation of anti-Sendai virus cytotoxic T lymphocytes by viral and H-2 antigens incorporated into the same lipid bilayer by membrane fusion and by reconstitution into liposomes. J Immunol. 1980 Feb;124(2):724–731. [PubMed] [Google Scholar]
  22. Hale A. H., Ruebush M. J., Harris D. T. Elicitation of anti-viral cytotoxic T lymphocytes with purified viral and H-2 antigens. J Immunol. 1980 Jul;125(1):428–430. [PubMed] [Google Scholar]
  23. Heath R. B. The pathogenesis of respiratory viral infection. Postgrad Med J. 1979 Feb;55(640):122–127. doi: 10.1136/pgmj.55.640.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Homma M., Ouchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol. 1973 Dec;12(6):1457–1465. doi: 10.1128/jvi.12.6.1457-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Homma M. Trypsin action on the growth of Sendai virus in tissue culture cells. I. Restoration of the infectivity for L cells by direct action of tyrpsin on L cell-borne Sendai virus. J Virol. 1971 Nov;8(5):619–629. doi: 10.1128/jvi.8.5.619-629.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Iida T., Tajima M., Murata Y. Transmission of maternal antibodies to Sendai virus in mice and its significance in enzootic infection. J Gen Virol. 1973 Mar;18(3):247–254. doi: 10.1099/0022-1317-18-3-247. [DOI] [PubMed] [Google Scholar]
  27. Ishida N., Homma M. Sendai virus. Adv Virus Res. 1978;23:349–383. doi: 10.1016/s0065-3527(08)60103-7. [DOI] [PubMed] [Google Scholar]
  28. Ito Y., Yamamoto F., Takano M., Maeno K., Shimokata K., Iinuma M., Hara K., Iijima S. Detection of cellular receptors for Sendai virus in mouse tissue sections. Arch Virol. 1983;75(1-2):103–113. doi: 10.1007/BF01314130. [DOI] [PubMed] [Google Scholar]
  29. Itoh K., Suzuki R., Umezu Y., Hanaumi K., Kumagai K. Studies of murine large granular lymphocytes. II. Tissue, strain, and age distributions of LGL and LAL. J Immunol. 1982 Jul;129(1):395–405. [PubMed] [Google Scholar]
  30. Itoh M., Shibuta H., Homma M. Single amino acid substitution of Sendai virus at the cleavage site of the fusion protein confers trypsin resistance. J Gen Virol. 1987 Nov;68(Pt 11):2939–2944. doi: 10.1099/0022-1317-68-11-2939. [DOI] [PubMed] [Google Scholar]
  31. Iwai H., Ueda K., Saito M. Recovery of nude mice from Sendai virus infection after adoptive transfer of spleen T cells or T cell-depleted spleen cells. Microbiol Immunol. 1983;27(5):465–469. doi: 10.1111/j.1348-0421.1983.tb00605.x. [DOI] [PubMed] [Google Scholar]
  32. Kast W. M., de Waal L. P., Melief C. J. Thymus dictates major histocompatibility complex (MHC) specificity and immune response gene phenotype of class II MHC-restricted T cells but not of class I MHC-restricted T cells. J Exp Med. 1984 Dec 1;160(6):1752–1766. doi: 10.1084/jem.160.6.1752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Koszinowski U. H., Gething M. J. Generation of virus-specific cytotoxic T cells in vitro. II. Induction requirements with functionally inactivated virus preparations. Eur J Immunol. 1980 Jan;10(1):30–35. doi: 10.1002/eji.1830100107. [DOI] [PubMed] [Google Scholar]
  34. Koszinowski U. H., Simon M. M. Generation of virus-specific cytotoxic T cells in vitro. I. Induction conditions of primary and secondary Sendai virus-specific cytotoxic T cells. Eur J Immunol. 1979 Sep;9(9):715–722. doi: 10.1002/eji.1830090910. [DOI] [PubMed] [Google Scholar]
  35. Koszinowski U., Gething M. J., Waterfield M. T-cell cytotoxicity in the absence of viral protein synthesis in target cells. Nature. 1977 May 12;267(5607):160–163. doi: 10.1038/267160a0. [DOI] [PubMed] [Google Scholar]
  36. Kurrle R., Röllinghoff M., Wagner H. H-2-linked murine cytotoxic T cell responses specific for sendai virus-infected cells. Eur J Immunol. 1978 Dec;8(12):910–912. doi: 10.1002/eji.1830081216. [DOI] [PubMed] [Google Scholar]
  37. Mazanec M. B., Nedrud J. G., Lamm M. E. Immunoglobulin A monoclonal antibodies protect against Sendai virus. J Virol. 1987 Aug;61(8):2624–2626. doi: 10.1128/jvi.61.8.2624-2626.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McGee M., Hale A. H., Panetti M. Elicitation of primary anti-Sendai virus cytotoxic T lymphocytes with purified viral glycoproteins. Eur J Immunol. 1980 Dec;10(12):923–928. doi: 10.1002/eji.1830101207. [DOI] [PubMed] [Google Scholar]
  39. Miskimen J. A., Guertin D. P., Fan D. P., David C. S. Influence of H-2-linked genes on T cell proliferative and cytolytic responses to peptides of Sendai viral proteins. J Immunol. 1982 Apr;128(4):1522–1528. [PubMed] [Google Scholar]
  40. Mountcastle W. E., Compans R. W., Choppin P. W. Proteins and glycoproteins of paramyxoviruses: a comparison of simian virus 5, Newcastle disease virus, and Sendai virus. J Virol. 1971 Jan;7(1):47–52. doi: 10.1128/jvi.7.1.47-52.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Muramatsu M., Homma M. Trypsin action on the growth of Sendai virus in tissue culture cells. V. An activating enzyme for Sendai virus in the chorioallantoic fluid of the embryonated chicken egg. Microbiol Immunol. 1980;24(2):113–122. doi: 10.1111/j.1348-0421.1980.tb00569.x. [DOI] [PubMed] [Google Scholar]
  42. Orvell C., Grandien M. The effects of monoclonal antibodies on biologic activities of structural proteins of Sendai virus. J Immunol. 1982 Dec;129(6):2779–2787. [PubMed] [Google Scholar]
  43. Portner A. The HN glycoprotein of Sendai virus: analysis of site(s) involved in hemagglutinating and neuraminidase activities. Virology. 1981 Dec;115(2):375–384. doi: 10.1016/0042-6822(81)90118-5. [DOI] [PubMed] [Google Scholar]
  44. Scheid A., Choppin P. W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974 Feb;57(2):475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  45. Scheid A., Choppin P. W. Protease activation mutants of sendai virus. Activation of biological properties by specific proteases. Virology. 1976 Jan;69(1):265–277. doi: 10.1016/0042-6822(76)90213-0. [DOI] [PubMed] [Google Scholar]
  46. Scheid A., Choppin P. W. Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology. 1977 Jul 1;80(1):54–66. doi: 10.1016/0042-6822(77)90380-4. [DOI] [PubMed] [Google Scholar]
  47. Schrader J. W., Edelman G. M. Joint recognition by cytotoxic T cells of inactivated Sendai virus and products of the major histocompatibility complex. J Exp Med. 1977 Mar 1;145(3):523–539. doi: 10.1084/jem.145.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shapiro M. E., Burakoff S. J., Benacerraf B., Finberg R. W. Ir gene control of the cytotoxic T lymphocyte response to Sendai virus: H-2k mice are low responders to Sendai. J Immunol. 1981 Dec;127(6):2571–2574. [PubMed] [Google Scholar]
  49. Silver S. M., Scheid A., Choppin P. W. Loss on serial passage of rhesus monkey kidney cells of proteolytic activity required for Sendai virus activation. Infect Immun. 1978 Apr;20(1):235–241. doi: 10.1128/iai.20.1.235-241.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Stitz L., Baenziger J., Pircher H., Hengartner H., Zinkernagel R. M. Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities. J Immunol. 1986 Jun 15;136(12):4674–4680. [PubMed] [Google Scholar]
  51. Sugamura K., Shimizu K., Zarling D. A., Bach F. H. Role of sendai virus fusion-glycoprotein in target cell susceptibility to cytotoxic T cells. Nature. 1977 Nov 17;270(5634):251–253. doi: 10.1038/270251a0. [DOI] [PubMed] [Google Scholar]
  52. Tashiro M., Homma M. Evidence of proteolytic activation of Sendai virus in mouse lung. Arch Virol. 1983;77(2-4):127–137. doi: 10.1007/BF01309262. [DOI] [PubMed] [Google Scholar]
  53. Tashiro M., Homma M. Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs. Infect Immun. 1983 Feb;39(2):879–888. doi: 10.1128/iai.39.2.879-888.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tashiro M., Homma M. Protection of mice from wild-type Sendai virus infection by a trypsin-resistant mutant, TR-2. J Virol. 1985 Jan;53(1):228–234. doi: 10.1128/jvi.53.1.228-234.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tsukui M., Ito H., Tada M., Nakata M., Miyajima H., Fujiwara K. Protective effect of inactivated virus vaccine on Sendai virus infection in rats. Lab Anim Sci. 1982 Apr;32(2):143–146. [PubMed] [Google Scholar]
  56. Zinkernagel R. M., Althage A., Cooper S., Kreeb G., Klein P. A., Sefton B., Flaherty L., Stimpfling J., Shreffler D., Klein J. Ir-genes in H-2 regulate generation of anti-viral cytotoxic T cells. Mapping to K or D and dominance of unresponsiveness. J Exp Med. 1978 Aug 1;148(2):592–606. doi: 10.1084/jem.148.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. de Waal L. P., Kast W. M., Melvold R. W., Melief C. J. Regulation of the cytotoxic T lymphocyte response against Sendai virus analyzed with H-2 mutants. J Immunol. 1983 Mar;130(3):1090–1096. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES