Abstract
By starting from a thrice-purified wild-type measles virus plaque, the generation of detectable subgenomic RNAs was achieved within a series of five serial infections of Vero cells. The evolution of these subgenomic RNAs was followed for seven serial passages and ended with the preparation of a highly interfering viral stock. On the other hand, the detection of discrete subgenomic RNAs was achieved during the first infection of Vero cells with at least one of three measles virus vaccine preparations tested. These subgenomic RNAs, which interfered very efficiently with the replication of the endogenous standard genomes upon vaccine infection but showed a moderate interfering activity with a standard virus stock derived by plaque purification from the vaccine preparation, resulted from the presence of defective interfering particles in the vaccine preparation. The relevance of this finding for the attenuation, stability, and potential capacity for persistent infection of such a vaccine is discussed.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amesse L. S., Pridgen C. L., Kingsbury D. W. Sendai virus DI RNA species with conserved virus genome termini and extensive internal deletions. Virology. 1982 Apr 15;118(1):17–27. doi: 10.1016/0042-6822(82)90315-4. [DOI] [PubMed] [Google Scholar]
- Bean W. J., Kawaoka Y., Wood J. M., Pearson J. E., Webster R. G. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. J Virol. 1985 Apr;54(1):151–160. doi: 10.1128/jvi.54.1.151-160.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COOPER P. D., BELLETT A. J. A transmissible interfering component of vesicular stomatitis virus preparations. J Gen Microbiol. 1959 Dec;21:485–497. doi: 10.1099/00221287-21-3-485. [DOI] [PubMed] [Google Scholar]
- Cane C., McLain L., Dimmock N. J. Intracellular stability of the interfering activity of a defective interfering influenza virus in the absence of virus multiplication. Virology. 1987 Aug;159(2):259–264. doi: 10.1016/0042-6822(87)90463-6. [DOI] [PubMed] [Google Scholar]
- Carter C., Schuluederberg A., Black F. L. Viral RNA synthesis in measles virus-infected cells. Virology. 1973 Jun;53(2):379–383. doi: 10.1016/0042-6822(73)90217-1. [DOI] [PubMed] [Google Scholar]
- Cattaneo R., Rebmann G., Schmid A., Baczko K., ter Meulen V., Billeter M. A. Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J. 1987 Mar;6(3):681–688. doi: 10.1002/j.1460-2075.1987.tb04808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattaneo R., Schmid A., Billeter M. A., Sheppard R. D., Udem S. A. Multiple viral mutations rather than host factors cause defective measles virus gene expression in a subacute sclerosing panencephalitis cell line. J Virol. 1988 Apr;62(4):1388–1397. doi: 10.1128/jvi.62.4.1388-1397.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers T. M., Webster R. G. Defective interfering virus associated with A/Chicken/Pennsylvania/83 influenza virus. J Virol. 1987 May;61(5):1517–1523. doi: 10.1128/jvi.61.5.1517-1523.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DePolo N. J., Giachetti C., Holland J. J. Continuing coevolution of virus and defective interfering particles and of viral genome sequences during undiluted passages: virus mutants exhibiting nearly complete resistance to formerly dominant defective interfering particles. J Virol. 1987 Feb;61(2):454–464. doi: 10.1128/jvi.61.2.454-464.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DePolo N. J., Holland J. J. The intracellular half-lives of nonreplicating nucleocapsids of DI particles of wild type and mutant strains of vesicular stomatitis virus. Virology. 1986 Jun;151(2):371–378. doi: 10.1016/0042-6822(86)90057-7. [DOI] [PubMed] [Google Scholar]
- Dowling P. C., Giorgi C., Roux L., Dethlefsen L. A., Galantowicz M. E., Blumberg B. M., Kolakofsky D. Molecular cloning of the 3'-proximal third of Sendai virus genome. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5213–5216. doi: 10.1073/pnas.80.17.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENDERS J. F., KATZ S. L., MILOVANOVIC M. V., HOLLOWAY A. Studies on an attenuated measles-virus vaccine. I. Development and preparations of the vaccine: technics for assay of effects of vaccination. N Engl J Med. 1960 Jul 28;263:153–159. doi: 10.1056/NEJM196007282630401. [DOI] [PubMed] [Google Scholar]
- Galazka A. M., Lauer B. A., Henderson R. H., Keja J. Indications and contraindications for vaccines used in the Expanded Programme on Immunization. Bull World Health Organ. 1984;62(3):357–366. [PMC free article] [PubMed] [Google Scholar]
- HACKETT A. J. A POSSIBLE MORPHOLOGIC BASIS FOR THE AUTOINTERFERENCE PHENOMENON IN VESICULAR STOMATITIS VIRUS. Virology. 1964 Sep;24:51–59. doi: 10.1016/0042-6822(64)90147-3. [DOI] [PubMed] [Google Scholar]
- HOLLAND J. J., McLAREN L. C. Improved method for staining cell monolayers for virus plaque counts. J Bacteriol. 1959 Oct;78:596–597. doi: 10.1128/jb.78.4.596-597.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall W. W., Martin S. J., Gould E. Defective interfering particles produced during the replication of measles virus. Med Microbiol Immunol. 1974;160(2-3):155–164. doi: 10.1007/BF02121722. [DOI] [PubMed] [Google Scholar]
- Henle W., Henle G. INTERFERENCE OF INACTIVE VIRUS WITH THE PROPAGATION OF VIRUS OF INFLUENZA. Science. 1943 Jul 23;98(2534):87–89. doi: 10.1126/science.98.2534.87. [DOI] [PubMed] [Google Scholar]
- Hilleman M. R., Buynak E. B., Weibel R. E., Stokes J., Jr, Whitman J. E., Jr, Leagus M. B. Development and evaluation of the Moraten measles virus vaccine. JAMA. 1968 Oct 14;206(3):587–590. [PubMed] [Google Scholar]
- Holland J. J., Villarreal L. P., Breindl M. Factors involved in the generation and replication of rhabdovirus defective T particles. J Virol. 1976 Mar;17(3):805–815. doi: 10.1128/jvi.17.3.805-815.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland J. J., Villarreal L. P. Purification of defective interfering T particles of vesicular stomatitis and rabies viruses generated in vivo in brains of newborn mice. Virology. 1975 Oct;67(2):438–449. doi: 10.1016/0042-6822(75)90445-6. [DOI] [PubMed] [Google Scholar]
- Horodyski F. M., Nichol S. T., Spindler K. R., Holland J. J. Properties of DI particle resistant mutants of vesicular stomatitis virus isolated from persistent infections and from undiluted passages. Cell. 1983 Jul;33(3):801–810. doi: 10.1016/0092-8674(83)90022-3. [DOI] [PubMed] [Google Scholar]
- Huang A. S. Defective interfering viruses. Annu Rev Microbiol. 1973;27:101–117. doi: 10.1146/annurev.mi.27.100173.000533. [DOI] [PubMed] [Google Scholar]
- Huang A. S., Wagner R. R. Comparative sedimentation coefficients of RNA extracted from plaque-forming and defective particles of vesicular stomatitis virus. J Mol Biol. 1966 Dec 28;22(2):381–384. doi: 10.1016/0022-2836(66)90143-4. [DOI] [PubMed] [Google Scholar]
- Huang A. S., Wagner R. R. Defective T particles of vesicular stomatitis virus. II. Biologic role in homologous interference. Virology. 1966 Oct;30(2):173–181. doi: 10.1016/0042-6822(66)90093-6. [DOI] [PubMed] [Google Scholar]
- Hull J. D., Krah D. L., Choppin P. W. Resistance of a measles virus mutant to fusion inhibitory oligopeptides is not associated with mutations in the fusion peptide. Virology. 1987 Aug;159(2):368–372. doi: 10.1016/0042-6822(87)90475-2. [DOI] [PubMed] [Google Scholar]
- Ikić D., Juzbasić M., Beck M., Hrabar A., Cimbur-Schreiber T. Attenuation and characterisation of Edmonston-Zagreb measles virus. Ann Immunol Hung. 1972;16(0):175–181. [PubMed] [Google Scholar]
- Kawai A., Matsumoto S., Tanabe K. Characterization of rabies viruses recovered from persistently infected BHK cells. Virology. 1975 Oct;67(2):520–533. doi: 10.1016/0042-6822(75)90452-3. [DOI] [PubMed] [Google Scholar]
- Kiley M. P., Gray R. H., Payne F. E. Replication of measles virus: distinct species of short nucleocapsids in cytoplasmic extracts of infected cells. J Virol. 1974 Mar;13(3):721–728. doi: 10.1128/jvi.13.3.721-728.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingsbury D. W., Portner A., Darlington R. W. Properties of incomplete Sendai virions and subgenomic viral RNAs. Virology. 1970 Dec;42(4):857–871. doi: 10.1016/0042-6822(70)90335-1. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell. 1976 Aug;8(4):547–555. doi: 10.1016/0092-8674(76)90223-3. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D. Studies on the generation and amplification of sendai virus defective-interfering genomes. Virology. 1979 Mar;93(2):589–593. doi: 10.1016/0042-6822(79)90263-0. [DOI] [PubMed] [Google Scholar]
- Krugman S. Further-attenuated measles vaccine: characteristics and use. Rev Infect Dis. 1983 May-Jun;5(3):477–481. doi: 10.1093/clinids/5.3.477. [DOI] [PubMed] [Google Scholar]
- Lazzarini R. A., Keene J. D., Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981 Oct;26(2 Pt 2):145–154. doi: 10.1016/0092-8674(81)90298-1. [DOI] [PubMed] [Google Scholar]
- MIMS C. A. Rift Valley Fever virus in mice. IV. Incomplete virus; its production and properties. Br J Exp Pathol. 1956 Apr;37(2):129–143. [PMC free article] [PubMed] [Google Scholar]
- Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. G., Dimock K., Kang C. Y. Defective interfering particles of human parainfluenza virus 3. Virology. 1987 Jun;158(2):439–443. doi: 10.1016/0042-6822(87)90217-0. [DOI] [PubMed] [Google Scholar]
- Nayak D. P. Defective interfering influenza viruses. Annu Rev Microbiol. 1980;34:619–644. doi: 10.1146/annurev.mi.34.100180.003155. [DOI] [PubMed] [Google Scholar]
- Perrault J. Origin and replication of defective interfering particles. Curr Top Microbiol Immunol. 1981;93:151–207. doi: 10.1007/978-3-642-68123-3_7. [DOI] [PubMed] [Google Scholar]
- Rima B. K., Davidson W. B., Martin S. J. The role of defective interfering particles in persistent infection of Vero cells by measles virus. J Gen Virol. 1977 Apr;35(1):89–97. doi: 10.1099/0022-1317-35-1-89. [DOI] [PubMed] [Google Scholar]
- Roux L., Holland J. J. Role of defective interfering particles of Sendai virus in persistent infections. Virology. 1979 Feb;93(1):91–103. doi: 10.1016/0042-6822(79)90278-2. [DOI] [PubMed] [Google Scholar]
- Roux L., Holland J. J. Viral genome synthesis in BHK 21 cells persistently infected with Sendai virus. Virology. 1980 Jan 15;100(1):53–64. doi: 10.1016/0042-6822(80)90551-6. [DOI] [PubMed] [Google Scholar]
- SCHWARZ A. J. IMMUNIZATION AGAINST MEASLES: DEVELOPMENT AND EVALUATION OF A HIGHLY ATTENUATED LIVE MEASLES VACCINE. Ann Paediatr. 1964;202:241–252. [PubMed] [Google Scholar]
- SCHWARZ A. J. Preliminary tests of a highly attenuated measles vaccine. Am J Dis Child. 1962 Mar;103:386–389. doi: 10.1001/archpedi.1962.02080020398042. [DOI] [PubMed] [Google Scholar]
- STOKES J., Jr, WEIBEL R., HALENDA R., REILLY C. M., HILLEMAN M. R. Enders' live measles-virus vaccine with human immune globulin. I. Clinical reactions. Am J Dis Child. 1962 Mar;103:366–372. doi: 10.1001/archpedi.1962.02080020378037. [DOI] [PubMed] [Google Scholar]
- Udem S. A., Cook K. A. Isolation and characterization of measles virus intracellular nucleocapsid RNA. J Virol. 1984 Jan;49(1):57–65. doi: 10.1128/jvi.49.1.57-65.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VON MAGNUS P. Incomplete forms of influenza virus. Adv Virus Res. 1954;2:59–79. doi: 10.1016/s0065-3527(08)60529-1. [DOI] [PubMed] [Google Scholar]
- Zilber N., Rannon L., Alter M., Kahana E. Measles, measles vaccination, and risk of subacute sclerosing panencephalitis (SSPE). Neurology. 1983 Dec;33(12):1558–1564. [PubMed] [Google Scholar]