Skip to main content
The BMJ logoLink to The BMJ
. 1995 Dec 2;311(7018):1479–1482. doi: 10.1136/bmj.311.7018.1479

Robots in operating theatres.

R A Buckingham 1, R O Buckingham 1
PMCID: PMC2543705  PMID: 8520340

Abstract

Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion.

Full text

PDF
1479

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benabid A. L., Lavallee S., Hoffmann D., Cinquin P., Demongeot J., Danel F. Potential use of robots in endoscopic neurosurgery. Acta Neurochir Suppl (Wien) 1992;54:93–97. doi: 10.1007/978-3-7091-6687-1_14. [DOI] [PubMed] [Google Scholar]
  2. Drake J. M., Joy M., Goldenberg A., Kreindler D. Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991 Jul;29(1):27–33. doi: 10.1097/00006123-199107000-00005. [DOI] [PubMed] [Google Scholar]
  3. Glauser D., Flury P., Durr P., Funakubo H., Burckhardt C. W., Favre J., Schnyder P., Fankhauser H. Configuration of a robot dedicated to stereotactic surgery. Stereotact Funct Neurosurg. 1990;54-55:468–470. doi: 10.1159/000100256. [DOI] [PubMed] [Google Scholar]
  4. Gybels J., Vandermeulen D., Suetens P., Marchal G., Wilms G. A prototype medical workstation for computer-assisted stereotactic neurosurgery. Stereotact Funct Neurosurg. 1990;54-55:493–496. doi: 10.1159/000100261. [DOI] [PubMed] [Google Scholar]
  5. Hammel J. M., Van der Loos H. F., Perkash I. Evaluation of a vocational robot with a quadriplegic employee. Arch Phys Med Rehabil. 1992 Jul;73(7):683–693. [PubMed] [Google Scholar]
  6. Hillman M. R., Pullin G. M., Gammie A. R., Stammers C. W., Orpwood R. D. Clinical experience in rehabilitation robotics. J Biomed Eng. 1991 May;13(3):239–243. doi: 10.1016/0141-5425(91)90134-s. [DOI] [PubMed] [Google Scholar]
  7. Hillman M., Jepson J. Evaluation of a robotic workstation for the disabled. J Biomed Eng. 1992 May;14(3):187–192. doi: 10.1016/0141-5425(92)90050-u. [DOI] [PubMed] [Google Scholar]
  8. Matsen F. A., 3rd, Garbini J. L., Sidles J. A., Pratt B., Baumgarten D., Kaiura R. Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty. Clin Orthop Relat Res. 1993 Nov;(296):178–186. [PubMed] [Google Scholar]
  9. Regalbuto M. A., Krouskop T. A., Cheatham J. B. Toward a practical mobile robotic aid system for people with severe physical disabilities. J Rehabil Res Dev. 1992 Winter;29(1):19–26. doi: 10.1682/jrrd.1992.01.0019. [DOI] [PubMed] [Google Scholar]
  10. Sackier J. M., Wang Y. Robotically assisted laparoscopic surgery. From concept to development. Surg Endosc. 1994 Jan;8(1):63–66. doi: 10.1007/BF02909496. [DOI] [PubMed] [Google Scholar]
  11. van Vliet P., Wing A. M. A new challenge--robotics in the rehabilitation of the neurologically motor impaired. Phys Ther. 1991 Jan;71(1):39–47. doi: 10.1093/ptj/71.1.39. [DOI] [PubMed] [Google Scholar]

Articles from BMJ : British Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES