Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1984 Jul;51(1):42–46. doi: 10.1128/jvi.51.1.42-46.1984

Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

N J Olson, G L Marchin
PMCID: PMC254396  PMID: 6374167

Abstract

A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly.

Full text

PDF
42

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. Chace K. V., Hall D. H. Characterization of new regulatory mutants of bacteriophage T4. II. New class of mutants. J Virol. 1975 Apr;15(4):929–945. doi: 10.1128/jvi.15.4.929-945.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chrispeels M. J., Boyd R. F., Williams L. S., Neidhardt F. C. Modification of valyl tRNA synthetase by bacteriophage in Escherichia coli. J Mol Biol. 1968 Feb 14;31(3):463–475. doi: 10.1016/0022-2836(68)90421-x. [DOI] [PubMed] [Google Scholar]
  4. Comer M. M., Neidhardt F. C. Effect of T4 modification of host valyl-tRNA synthetase on enzyme action in vivo. Virology. 1975 Oct;67(2):395–403. doi: 10.1016/0042-6822(75)90441-9. [DOI] [PubMed] [Google Scholar]
  5. DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
  6. Donini P. Amino acid control over deoxyribonucleic acid synthesis in Escherichia coli infected with T-even bacteriophage. J Bacteriol. 1970 Jun;102(3):616–627. doi: 10.1128/jb.102.3.616-627.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iwai K., Ishikawa K., Hayashi H. Amino-acid sequence of slightly lysine-rich histone. Nature. 1970 Jun 13;226(5250):1056–1058. doi: 10.1038/2261056b0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Marchin G. L., Comer M. M., Neidhardt F. C. Viral modification of the valyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1972 Aug 25;247(16):5132–5145. [PubMed] [Google Scholar]
  11. Marchin G. L. Mutations in a nonessential viral gene permit bacteriophage T4 to form plaques on Escherichia coli valS ts relA. Science. 1980 Jul 11;209(4453):294–295. doi: 10.1126/science.6992274. [DOI] [PubMed] [Google Scholar]
  12. Marchin G. L., Müller U. R., al-Khateeb G. H. The effect of transfer ribonucleic acid on virally modified valyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1974 Aug 10;249(15):4705–4711. [PubMed] [Google Scholar]
  13. McClain W. H. Phage-induced conversion of host valyl-tRNA synthetase. In: strategy of the viral genome. Ciba Found Symp. 1971:191–205. [PubMed] [Google Scholar]
  14. Moen T. L., Seidman J. G., McClain W. H. A catalogue of transfer RNA-like molecules synthesized following infection of Escherichia coli by T-even bacteriophages. J Biol Chem. 1978 Nov 10;253(21):7910–7917. [PubMed] [Google Scholar]
  15. Müller U. R., Marchin G. L. Analysis of the structure of T4 bacteriophage-modified valyl-tRNA synthetase by limited proteolysis and isoelectric focusing. J Biol Chem. 1977 Oct 10;252(19):6646–6650. [PubMed] [Google Scholar]
  16. Müller U. R., Marchin G. L. Purification and properties of a T4 bacteriophage factor that modifies valyl-tRNA synthetase of Escherichia coli. J Biol Chem. 1977 Oct 10;252(19):6640–6645. [PubMed] [Google Scholar]
  17. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neidhardt F. C., Earhart C. F. Phage-induced appearance of a valyl sRNA synthetase activity in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1966;31:557–563. doi: 10.1101/sqb.1966.031.01.072. [DOI] [PubMed] [Google Scholar]
  19. Spadafora C., Igo-Kemenes T., Zachau H. G. Changes in transfer RNAs and aminoacyl-tRNA synthetases during sea urchin development. Biochim Biophys Acta. 1973 Jul 27;312(4):674–684. doi: 10.1016/0005-2787(73)90071-3. [DOI] [PubMed] [Google Scholar]
  20. Takeda Y., Folkmanis A., Echols H. Cro regulatory protein specified by bacteriophage lambda. Structure, DNA-binding, and repression of RNA synthesis. J Biol Chem. 1977 Sep 10;252(17):6177–6183. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES