Abstract
A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Chace K. V., Hall D. H. Characterization of new regulatory mutants of bacteriophage T4. II. New class of mutants. J Virol. 1975 Apr;15(4):929–945. doi: 10.1128/jvi.15.4.929-945.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chrispeels M. J., Boyd R. F., Williams L. S., Neidhardt F. C. Modification of valyl tRNA synthetase by bacteriophage in Escherichia coli. J Mol Biol. 1968 Feb 14;31(3):463–475. doi: 10.1016/0022-2836(68)90421-x. [DOI] [PubMed] [Google Scholar]
- Comer M. M., Neidhardt F. C. Effect of T4 modification of host valyl-tRNA synthetase on enzyme action in vivo. Virology. 1975 Oct;67(2):395–403. doi: 10.1016/0042-6822(75)90441-9. [DOI] [PubMed] [Google Scholar]
- DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
- Donini P. Amino acid control over deoxyribonucleic acid synthesis in Escherichia coli infected with T-even bacteriophage. J Bacteriol. 1970 Jun;102(3):616–627. doi: 10.1128/jb.102.3.616-627.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwai K., Ishikawa K., Hayashi H. Amino-acid sequence of slightly lysine-rich histone. Nature. 1970 Jun 13;226(5250):1056–1058. doi: 10.1038/2261056b0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marchin G. L., Comer M. M., Neidhardt F. C. Viral modification of the valyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1972 Aug 25;247(16):5132–5145. [PubMed] [Google Scholar]
- Marchin G. L. Mutations in a nonessential viral gene permit bacteriophage T4 to form plaques on Escherichia coli valS ts relA. Science. 1980 Jul 11;209(4453):294–295. doi: 10.1126/science.6992274. [DOI] [PubMed] [Google Scholar]
- Marchin G. L., Müller U. R., al-Khateeb G. H. The effect of transfer ribonucleic acid on virally modified valyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1974 Aug 10;249(15):4705–4711. [PubMed] [Google Scholar]
- McClain W. H. Phage-induced conversion of host valyl-tRNA synthetase. In: strategy of the viral genome. Ciba Found Symp. 1971:191–205. [PubMed] [Google Scholar]
- Moen T. L., Seidman J. G., McClain W. H. A catalogue of transfer RNA-like molecules synthesized following infection of Escherichia coli by T-even bacteriophages. J Biol Chem. 1978 Nov 10;253(21):7910–7917. [PubMed] [Google Scholar]
- Müller U. R., Marchin G. L. Analysis of the structure of T4 bacteriophage-modified valyl-tRNA synthetase by limited proteolysis and isoelectric focusing. J Biol Chem. 1977 Oct 10;252(19):6646–6650. [PubMed] [Google Scholar]
- Müller U. R., Marchin G. L. Purification and properties of a T4 bacteriophage factor that modifies valyl-tRNA synthetase of Escherichia coli. J Biol Chem. 1977 Oct 10;252(19):6640–6645. [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidhardt F. C., Earhart C. F. Phage-induced appearance of a valyl sRNA synthetase activity in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1966;31:557–563. doi: 10.1101/sqb.1966.031.01.072. [DOI] [PubMed] [Google Scholar]
- Spadafora C., Igo-Kemenes T., Zachau H. G. Changes in transfer RNAs and aminoacyl-tRNA synthetases during sea urchin development. Biochim Biophys Acta. 1973 Jul 27;312(4):674–684. doi: 10.1016/0005-2787(73)90071-3. [DOI] [PubMed] [Google Scholar]
- Takeda Y., Folkmanis A., Echols H. Cro regulatory protein specified by bacteriophage lambda. Structure, DNA-binding, and repression of RNA synthesis. J Biol Chem. 1977 Sep 10;252(17):6177–6183. [PubMed] [Google Scholar]
