Abstract
Concern about the side effects of various anaesthetic agents in newborn infants has led to the widespread use of anaesthesia with unsupplemented nitrous oxide and oxygen with muscle relaxants in such patients. To investigate the efficacy of such a regimen 36 neonates undergoing operations were randomised to two groups: one group received anaesthesia with nitrous oxide and curare alone and the other was additionally given halothane. Concentrations of metabolites and hormones were measured before and at the end of operation and at six, 12, and 24 hours after operation and the values compared between the two groups. Neonates given halothane anaesthesia showed decreased hormonal responses to operation, with significant differences between the two groups in the changes in adrenaline, noradrenaline, and cortisol concentrations and the ratio of insulin to glucagon concentration. Changes in blood concentrations of glucose and total ketone bodies and plasma concentrations of non-esterified fatty acids were also decreased in neonates receiving halothane anaesthesia. Neonates given anaesthesia with unsupplemented nitrous oxide showed significantly greater increases in the urinary ratio of 3-methylhistidine to creatinine concentration and their clinical condition was also more unstable during and after operation.
Unless specifically contraindicated potent anaesthesia with halothane or other anaesthetic agents should be given to all neonates undergoing surgical operations as it decreases their stress responses and improves their clinical stability during and after operation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
- Anand K. J., Brown M. J., Bloom S. R., Aynsley-Green A. Studies on the hormonal regulation of fuel metabolism in the human newborn infant undergoing anaesthesia and surgery. Horm Res. 1985;22(1-2):115–128. doi: 10.1159/000180083. [DOI] [PubMed] [Google Scholar]
- Anand K. J., Hickey P. R. Pain and its effects in the human neonate and fetus. N Engl J Med. 1987 Nov 19;317(21):1321–1329. doi: 10.1056/NEJM198711193172105. [DOI] [PubMed] [Google Scholar]
- Aynsley-Green A., Biebuyck J. F., Alberti K. G. Anaesthesia and insulin secretion: the effects of diethyl ether, halothane, pentobarbitone sodium and ketamine hydrochloride on intravenous glucose tolerance and insulin secretion in the rat. Diabetologia. 1973 Aug;9(4):274–281. doi: 10.1007/BF01221854. [DOI] [PubMed] [Google Scholar]
- Bessey P. Q., Watters J. M., Aoki T. T., Wilmore D. W. Combined hormonal infusion simulates the metabolic response to injury. Ann Surg. 1984 Sep;200(3):264–281. doi: 10.1097/00000658-198409000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biebuyck J. F., Lund P., Krebs H. A. The effects of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on glycolysis and biosynthetic processes of the isolated perfused rat liver. Biochem J. 1972 Jul;128(3):711–720. doi: 10.1042/bj1280711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bromage P. R., Shibata H. R., Willoughby H. W. Influence of prolonged epidural blockade on blood sugar and cortisol responses to operations upon the upper part of the abdomen and the thorax. Surg Gynecol Obstet. 1971 Jun;132(6):1051–1056. [PubMed] [Google Scholar]
- Brown M. J., Jenner D. A. Novel double-isotope technique for enzymatic assay of catecholamines, permitting high precision, sensitivity and plasma sample capacity. Clin Sci (Lond) 1981 Nov;61(5):591–598. doi: 10.1042/cs0610591. [DOI] [PubMed] [Google Scholar]
- Burgoyne J. L., Ballard F. J., Tomas F. M., Dobozy A., MacLennan A. H., Fitzgerald A., Dahlenburg G. W. Measurements of myofibrillar protein breakdown in newborn human infants. Clin Sci (Lond) 1982 Nov;63(5):421–427. doi: 10.1042/cs0630421. [DOI] [PubMed] [Google Scholar]
- Dierdorf S. F., Krishna G. Anesthetic management of neonatal surgical emergencies. Anesth Analg. 1981 Apr;60(4):204–215. [PubMed] [Google Scholar]
- Gelman S., Fowler K. C., Smith L. R. Liver circulation and function during isoflurane and halothane anesthesia. Anesthesiology. 1984 Dec;61(6):726–730. doi: 10.1097/00000542-198412000-00017. [DOI] [PubMed] [Google Scholar]
- Ghatei M. A., Uttenthal L. O., Bryant M. G., Christofides N. D., Moody A. J., Bloom S. R. Molecular forms of glucagon-like immunoreactivity in porcine intestine and pancreas. Endocrinology. 1983 Mar;112(3):917–923. doi: 10.1210/endo-112-3-917. [DOI] [PubMed] [Google Scholar]
- Gregory G. A. The baroresponses of preterm infants during halothane anaesthesia. Can Anaesth Soc J. 1982 Mar;29(2):105–107. doi: 10.1007/BF03007985. [DOI] [PubMed] [Google Scholar]
- Lerman J., Robinson S., Willis M. M., Gregory G. A. Anesthetic requirements for halothane in young children 0-1 month and 1-6 months of age. Anesthesiology. 1983 Nov;59(5):421–424. doi: 10.1097/00000542-198311000-00010. [DOI] [PubMed] [Google Scholar]
- Murray A. J., Ballard F. J., Tomas F. M. A rapid method for the analysis of N tau-methylhistidine in human urine. Anal Biochem. 1981 Sep 15;116(2):537–544. doi: 10.1016/0003-2697(81)90399-7. [DOI] [PubMed] [Google Scholar]
- Nicodemus H. F., Nassiri-Rahimi C., Bachman L., Smith T. C. Median effective doses (ED50) of halothane in adults and children. Anesthesiology. 1969 Oct;31(4):344–348. doi: 10.1097/00000542-196910000-00011. [DOI] [PubMed] [Google Scholar]
- Perry L. B., Van Dyke R. A., Theye R. A. Sympathoadrenal and hemodynamic effects of isoflurane, halothane, and cyclopropane in dogs. Anesthesiology. 1974 May;40(5):465–470. doi: 10.1097/00000542-197405000-00014. [DOI] [PubMed] [Google Scholar]
- Peto R., Pike M. C., Armitage P., Breslow N. E., Cox D. R., Howard S. V., Mantel N., McPherson K., Peto J., Smith P. G. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer. 1976 Dec;34(6):585–612. doi: 10.1038/bjc.1976.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roizen M. F., Horrigan R. W., Frazer B. M. Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision--MAC BAR. Anesthesiology. 1981 May;54(5):390–398. doi: 10.1097/00000542-198105000-00008. [DOI] [PubMed] [Google Scholar]
- Roizen M. F., Moss J., Henry D. P., Kopin I. J. Effects of halothane on plasma catecholamines. Anesthesiology. 1974 Nov;41(5):432–439. doi: 10.1097/00000542-197411000-00005. [DOI] [PubMed] [Google Scholar]
- Salem M. R., Bennett E. J. Anesthetic care of pediatric surgical patients. Crit Care Med. 1980 Oct;8(10):541–547. doi: 10.1097/00003246-198010000-00003. [DOI] [PubMed] [Google Scholar]
- Sippell W. G., Bidlingmaier F., Becker H., Brünig T., Dörr H., Hahn H., Golder W., Hollmann G., Knorr D. Simultaneous radioimmunoassay of plasma aldosterone, corticosterone, 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, 11-deoxycortisol, cortisol and cortisone. J Steroid Biochem. 1978 Jan;9(1):63–74. doi: 10.1016/0022-4731(78)90104-8. [DOI] [PubMed] [Google Scholar]
- Srinivasan G., Jain R., Pildes R. S., Kannan C. R. Glucose homeostasis during anesthesia and surgery in infants. J Pediatr Surg. 1986 Aug;21(8):718–721. doi: 10.1016/s0022-3468(86)80395-5. [DOI] [PubMed] [Google Scholar]
- Uozumi T., Manabe H., Kawashima Y., Hamanaka Y., Monden Y. Plasma cortisol, corticosterone and non-protein-bound cortisol in extra-corporeal circulation. Acta Endocrinol (Copenh) 1972 Mar;69(3):517–525. doi: 10.1530/acta.0.0690517. [DOI] [PubMed] [Google Scholar]
