Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1985 May;54(2):467–472. doi: 10.1128/jvi.54.2.467-472.1985

Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes.

R I Lehrer, K Daher, T Ganz, M E Selsted
PMCID: PMC254818  PMID: 2985808

Abstract

Six homologous peptides were purified to homogeneity from rabbit granulocytes or alveolar macrophages and tested for their ability to inactivate herpes simplex virus type 1 (HSV-1). Two of the peptides, MCP-1 and MCP-2, showed considerable in vitro neutralizing activity, whereas four structurally homologous peptides (NP-3a, NP-3b, NP-4, and NP-5) were relatively ineffective. Inactivation of HSV-1 by MCP-1 or MCP-2 depended on peptide concentration and on the time, temperature, and pH of the incubation. HSV-2, vesicular stomatitis virus, and influenza virus A/WSN were also susceptible to direct neutralization by MCP-1 or MCP-2, whereas cytomegalovirus, echovirus type 11, and reovirus type 3 were not. We speculate that MCP-1 and MCP-2, peptides that are abundant in rabbit granulocytes and lung macrophages, may contribute to antiviral defenses by mediating the direct inactivation of HSV-1 and selected other viruses.

Full text

PDF
467

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker Y., Olshevsky U., Levitt J. The role of arginine in the replication of herpes simplex virus. J Gen Virol. 1967 Oct;1(4):471–478. doi: 10.1099/0022-1317-1-4-471. [DOI] [PubMed] [Google Scholar]
  2. Chapes S. K., Tompkins W. A. Cytotoxic macrophages induced in hamsters by vaccinia virus: selective cytotoxicity for virus-infected targets by macrophages collected late after immunization. J Immunol. 1979 Jul;123(1):303–310. [PubMed] [Google Scholar]
  3. Frank U., Schindling B., Lindermann J., Falke D. Multiplication of herpes simplex virus types 1 and 2 in macrophages of NMRI and C57/BL mice. Acta Virol. 1978 May;22(3):193–202. [PubMed] [Google Scholar]
  4. Fujimiya Y., Rouse B. T., Babiuk L. A. Human neutrophil--mediated destruction of antibody sensitized herpes simplex virus type I infected cells. Can J Microbiol. 1978 Feb;24(2):182–186. doi: 10.1139/m78-031. [DOI] [PubMed] [Google Scholar]
  5. Glasgow L. A. Transfer of interferon-producing macrophages: new approach to viral chemotherapy. Science. 1970 Nov 20;170(3960):854–856. doi: 10.1126/science.170.3960.854. [DOI] [PubMed] [Google Scholar]
  6. Grewal A. S., Rouse B. T., Babiuk L. A. Mechanisms of resistant of herpesviruses: comparison of the effectiveness of different cell types in mediating antibody-dependent cell-mediated cytotoxicity. Infect Immun. 1977 Mar;15(3):698–703. doi: 10.1128/iai.15.3.698-703.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JOHNSON R. T. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS. II. A CELLULAR BASIS FOR THE DEVELOPMENT OF RESISTANCE WITH AGE. J Exp Med. 1964 Sep 1;120:359–374. doi: 10.1084/jem.120.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kohl S., Cahall D. L., Walters D. L., Schaffner V. E. Murine antibody-dependent cellular cytotoxicity to herpes simplex virus-infected target cells. J Immunol. 1979 Jul;123(1):25–30. [PubMed] [Google Scholar]
  9. Lehrer R. I., Selsted M. E., Szklarek D., Fleischmann J. Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Infect Immun. 1983 Oct;42(1):10–14. doi: 10.1128/iai.42.1.10-14.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lehrer R. I., Szklarek D., Selsted M. E., Fleischmann J. Increased content of microbicidal cationic peptides in rabbit alveolar macrophages elicited by complete Freund adjuvant. Infect Immun. 1981 Sep;33(3):775–778. doi: 10.1128/iai.33.3.775-778.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lodmell D. L., Notkins A. L. Cellular immunity to herpes simplex virus mediated by interferon. J Exp Med. 1974 Sep 1;140(3):764–778. doi: 10.1084/jem.140.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lopez C., Dudas G. Replication of herpes simplex virus type 1 in macrophages from resistant and susceptible mice. Infect Immun. 1979 Feb;23(2):432–437. doi: 10.1128/iai.23.2.432-437.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mims C. A., Gould J. The role of macrophages in mice infected with murine cytomegalovirus. J Gen Virol. 1978 Oct;41(1):143–153. doi: 10.1099/0022-1317-41-1-143. [DOI] [PubMed] [Google Scholar]
  14. Morahan P. S., Glasgow L. A., Crane J. L., Jr, Kern E. R. Comparison of antiviral and antitumor activity of activated macrophages. Cell Immunol. 1977 Feb;28(2):404–415. doi: 10.1016/0008-8749(77)90122-8. [DOI] [PubMed] [Google Scholar]
  15. Morahan P. S., Morse S. S., McGeorge M. G. Macrophage extrinsic antiviral activity during herpes simplex virus infection. J Gen Virol. 1980 Feb;46(2):291–300. doi: 10.1099/0022-1317-46-2-291. [DOI] [PubMed] [Google Scholar]
  16. Oleske J. M., Ashman R. B., Kohl S., Shore S. L., Starr S. E., Wood P., Nahmias A. J. Human polymorphonuclear leucocytes as mediators of antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells. Clin Exp Immunol. 1977 Mar;27(3):446–453. [PMC free article] [PubMed] [Google Scholar]
  17. Patterson-Delafield J., Martinez R. J., Lehrer R. I. Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun. 1980 Oct;30(1):180–192. doi: 10.1128/iai.30.1.180-192.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rouse B. T., Babiuk L. A., Henson P. M. Neutrophils in antiviral immunity: inhibition of virus replication by a mediator produced by bovine neutrophils. J Infect Dis. 1980 Feb;141(2):223–232. doi: 10.1093/infdis/141.2.223. [DOI] [PubMed] [Google Scholar]
  19. Rouse B. T., Wardley R. C., Babiuk L. A., Mukkur T. K. The role of neutrophils in antiviral defense--in vitro studies on the mechanism of antiviral inhibition. J Immunol. 1977 Jun;118(6):1957–1961. [PubMed] [Google Scholar]
  20. Selgrade M. K., Osborn J. E. Role of macrophages in resistance to murine cytomegalovirus. Infect Immun. 1974 Dec;10(6):1383–1390. doi: 10.1128/iai.10.6.1383-1390.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Selsted M. E., Brown D. M., DeLange R. J., Lehrer R. I. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem. 1983 Dec 10;258(23):14485–14489. [PubMed] [Google Scholar]
  22. Selsted M. E., Szklarek D., Lehrer R. I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun. 1984 Jul;45(1):150–154. doi: 10.1128/iai.45.1.150-154.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stevens J. G., Cook M. L. Restriction of herpes simplex virus by macrophages. An analysis of the cell-virus interaction. J Exp Med. 1971 Jan 1;133(1):19–38. doi: 10.1084/jem.133.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TANKERSLEY R. W., Jr AMINO ACID REQUIREMENTS OF HERPES SIMPLEX VIRUS IN HUMAN CELLS. J Bacteriol. 1964 Mar;87:609–613. doi: 10.1128/jb.87.3.609-613.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wardley R. C., Rouse B. T., Babiuk L. A. Antibody dependent cytotoxicity mediated by neutrophils: a possible mechanism of antiviral defense. J Reticuloendothel Soc. 1976 May;19(5):323–332. [PubMed] [Google Scholar]
  26. Wildy P., Gell P. G., Rhodes J., Newton A. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase? Infect Immun. 1982 Jul;37(1):40–45. doi: 10.1128/iai.37.1.40-45.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES