Skip to main content
The BMJ logoLink to The BMJ
. 1995 Nov 11;311(7015):1260–1264. doi: 10.1136/bmj.311.7015.1260

Individual variation in plasma cholesterol response to dietary saturated fat.

C Cox 1, J Mann 1, W Sutherland 1, M Ball 1
PMCID: PMC2551181  PMID: 7496234

Abstract

OBJECTIVE--To determine the extent to which plasma lipid concentrations of individuals are consistently sensitive to changes in saturated fats; to examine whether groups that consistently have large or small responses can be defined; and to identify factors which predict response of lipids to dietary change. DESIGN--A double crossover design in which two diets (S, providing 21% energy from saturated fat, and P, providing 10%) were followed for periods of six weeks in the sequence SPSP or PSPS. SETTING--67 free living subjects, total cholesterol 5.5-7.9 mmol/l. MAIN OUTCOME MEASURES--Relation of cholesterol responses to repeated dietary changes and of potential predictors and cholesterol response. RESULTS--Similar average changes in cholesterol mask a wide range of individual responses. Response was not related to compliance. In all participants the change in cholesterol observed when the nature of dietary fat was changed on the two crossovers was correlated (r = 0.31, P = 0.01); the degree of correlation between the two sets of responses was greater in the 46 consistent responders than in the 21 variable responders (r = 0.71 v r = 0.21). Mean differences in cholesterol between diet S and diet P during the two crossovers were 1.16 (SD 0.35) mmol/l and 0.95 (0.26) mmol/l for consistent hyperresponders and 0.18 (0.26) mmol/l and 0.18 (0.25) mmol/l for consistent minimal responders. In consistent responders, changes in total cholesterol in response to increasing saturated fats correlated with baseline cholesteryl ester transfer activity (r = 0.32, P = 0.03); total cholesterol (r = 0.37, P = 0.01); triglycerides (r = 0.30, P = 0.04); and apolipoprotein B (r = 0.54, P = 0.01). CONCLUSIONS--There is a degree of consistency in cholesterol response to instructions to change dietary fat which is not explained by dietary compliance, and there are groups of consistent hyperresponders and minimal responders within a population of hypercholesterolaemic individuals. Several factors predicting response have been identified. These results have relevance to dietary approaches aimed at reducing the lipoprotein mediated risk of coronary heart disease.

Full text

PDF
1260

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assmann G., Schriewer H., Schmitz G., Hägele E. O. Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin Chem. 1983 Dec;29(12):2026–2030. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Berg K. DNA polymorphism at the apolipoprotein B locus is associated with lipoprotein level. Clin Genet. 1986 Dec;30(6):515–520. doi: 10.1111/j.1399-0004.1986.tb01920.x. [DOI] [PubMed] [Google Scholar]
  4. Breslow J. L. Apolipoprotein genetic variation and human disease. Physiol Rev. 1988 Jan;68(1):85–132. doi: 10.1152/physrev.1988.68.1.85. [DOI] [PubMed] [Google Scholar]
  5. Castelli W. P., Garrison R. J., Wilson P. W., Abbott R. D., Kalousdian S., Kannel W. B. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986 Nov 28;256(20):2835–2838. [PubMed] [Google Scholar]
  6. Channon K. M., Clegg R. J., Bhatnagar D., Ishola M., Arrol S., Durrington P. N. Investigation of lipid transfer in human serum leading to the development of an isotopic method for the determination of endogenous cholesterol esterification and transfer. Atherosclerosis. 1990 Jan;80(3):217–226. doi: 10.1016/0021-9150(90)90029-i. [DOI] [PubMed] [Google Scholar]
  7. Clifton P. M., Kestin M., Abbey M., Drysdale M., Nestel P. J. Relationship between sensitivity to dietary fat and dietary cholesterol. Arteriosclerosis. 1990 May-Jun;10(3):394–401. doi: 10.1161/01.atv.10.3.394. [DOI] [PubMed] [Google Scholar]
  8. Clifton P. M., Nestel P. J. Influence of gender, body mass index, and age on response of plasma lipids to dietary fat plus cholesterol. Arterioscler Thromb. 1992 Aug;12(8):955–962. doi: 10.1161/01.atv.12.8.955. [DOI] [PubMed] [Google Scholar]
  9. Cobb M. M., Risch N. Low-density lipoprotein cholesterol responsiveness to diet in normolipidemic subjects. Metabolism. 1993 Jan;42(1):7–13. doi: 10.1016/0026-0495(93)90164-j. [DOI] [PubMed] [Google Scholar]
  10. Edington J., Geekie M., Carter R., Benfield L., Fisher K., Ball M., Mann J. Effect of dietary cholesterol on plasma cholesterol concentration in subjects following reduced fat, high fibre diet. Br Med J (Clin Res Ed) 1987 Feb 7;294(6568):333–336. doi: 10.1136/bmj.294.6568.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 Jun;18(6):499–502. [PubMed] [Google Scholar]
  13. Groener J. E., van Ramshorst E. M., Katan M. B., Mensink R. P., van Tol A. Diet-induced alteration in the activity of plasma lipid transfer protein in normolipidemic human subjects. Atherosclerosis. 1991 Apr;87(2-3):221–226. doi: 10.1016/0021-9150(91)90024-w. [DOI] [PubMed] [Google Scholar]
  14. Grundy S. M., Vega G. L. Plasma cholesterol responsiveness to saturated fatty acids. Am J Clin Nutr. 1988 May;47(5):822–824. doi: 10.1093/ajcn/47.5.822. [DOI] [PubMed] [Google Scholar]
  15. Hegsted D. M., McGandy R. B., Myers M. L., Stare F. J. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr. 1965 Nov;17(5):281–295. doi: 10.1093/ajcn/17.5.281. [DOI] [PubMed] [Google Scholar]
  16. Jacobs D. R., Jr, Anderson J. T., Hannan P., Keys A., Blackburn H. Variability in individual serum cholesterol response to change in diet. Arteriosclerosis. 1983 Jul-Aug;3(4):349–356. doi: 10.1161/01.atv.3.4.349. [DOI] [PubMed] [Google Scholar]
  17. KEYS A., ANDERSON J. T., GRANDE F. Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet. 1957 Nov 16;273(7003):959–966. doi: 10.1016/s0140-6736(57)91998-0. [DOI] [PubMed] [Google Scholar]
  18. KEYS A., ANDERSON J. T., GRANDE F. Serum cholesterol in man: diet fat and intrinsic responsiveness. Circulation. 1959 Feb;19(2):201–214. doi: 10.1161/01.cir.19.2.201. [DOI] [PubMed] [Google Scholar]
  19. Katan M. B., Berns M. A., Glatz J. F., Knuiman J. T., Nobels A., de Vries J. H. Congruence of individual responsiveness to dietary cholesterol and to saturated fat in humans. J Lipid Res. 1988 Jul;29(7):883–892. [PubMed] [Google Scholar]
  20. Katan M. B., Beynen A. C., de Vries J. H., Nobels A. Existence of consistent hypo- and hyperresponders to dietary cholesterol in man. Am J Epidemiol. 1986 Feb;123(2):221–234. doi: 10.1093/oxfordjournals.aje.a114231. [DOI] [PubMed] [Google Scholar]
  21. Lerner D. J., Kannel W. B. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J. 1986 Feb;111(2):383–390. doi: 10.1016/0002-8703(86)90155-9. [DOI] [PubMed] [Google Scholar]
  22. Lewis B., Mann J. I., Mancini M. Reducing the risks of coronary heart disease in individuals and in the population. Lancet. 1986 Apr 26;1(8487):956–959. doi: 10.1016/s0140-6736(86)91054-8. [DOI] [PubMed] [Google Scholar]
  23. Martin M. J., Hulley S. B., Browner W. S., Kuller L. H., Wentworth D. Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men. Lancet. 1986 Oct 25;2(8513):933–936. doi: 10.1016/s0140-6736(86)90597-0. [DOI] [PubMed] [Google Scholar]
  24. McGill H. C., Jr The relationship of dietary cholesterol to serum cholesterol concentration and to atherosclerosis in man. Am J Clin Nutr. 1979 Dec;32(12 Suppl):2664–2702. doi: 10.1093/ajcn/32.12.2664. [DOI] [PubMed] [Google Scholar]
  25. McNamara D. J., Kolb R., Parker T. S., Batwin H., Samuel P., Brown C. D., Ahrens E. H., Jr Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J Clin Invest. 1987 Jun;79(6):1729–1739. doi: 10.1172/JCI113013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miettinen T. A., Gylling H., Vanhanen H. Serum cholesterol response to dietary cholesterol and apoprotein E phenotype. Lancet. 1988 Nov 26;2(8622):1261–1261. doi: 10.1016/s0140-6736(88)90862-8. [DOI] [PubMed] [Google Scholar]
  27. Sutherland W. H., Walker R. J., Lewis-Barned N. J., Pratt H., Tillman H. C. Plasma cholesteryl ester transfer in patients with non-insulin dependent diabetes mellitus. Clin Chim Acta. 1994 Nov;231(1):29–38. doi: 10.1016/0009-8981(94)90251-8. [DOI] [PubMed] [Google Scholar]
  28. Tikkanen M. J., Huttunen J. K., Ehnholm C., Pietinen P. Apolipoprotein E4 homozygosity predisposes to serum cholesterol elevation during high fat diet. Arteriosclerosis. 1990 Mar-Apr;10(2):285–288. doi: 10.1161/01.atv.10.2.285. [DOI] [PubMed] [Google Scholar]
  29. Warnick G. R., Mayfield C., Albers J. J., Hazzard W. R. Gel isoelectric focusing method for specific diagnosis of familial hyperlipoproteinemia type 3. Clin Chem. 1979 Feb;25(2):279–284. [PubMed] [Google Scholar]
  30. Xu C. F., Boerwinkle E., Tikkanen M. J., Huttunen J. K., Humphries S. E., Talmud P. J. Genetic variation at the apolipoprotein gene loci contribute to response of plasma lipids to dietary change. Genet Epidemiol. 1990;7(4):261–275. doi: 10.1002/gepi.1370070405. [DOI] [PubMed] [Google Scholar]

Articles from BMJ : British Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES