Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1983 Jul;47(1):249–252. doi: 10.1128/jvi.47.1.249-252.1983

Characterization of RNase H activity associated with reverse transcriptase in simian foamy virus type 1.

A B Benzair, A Rhodes-Feuillette, R Emanoil-Ravicovitch, J Peries
PMCID: PMC255244  PMID: 6191042

Abstract

Spumavirinae or foamy viruses have been shown to have a characteristic RNA-dependent DNA polymerase activity. We demonstrate here the existence of an RNase H activity that copurifies with the 81-kilodalton monomeric polypeptide, which carries the RNA-dependent DNA polymerase activity of simian foamy virus type 1. RNase H degrades RNA hybrid substrates; however, it does not solubilize single-stranded RNAs. Inactivation assays with heat, high levels of bivalent cations, ethidium bromide, and sodium fluoride suggest that the RNase H catalytic site could be topologically independent from the DNA polymerase catalytic site.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzair A. B., Rhodes-Feuillette A., Emanoïl-Ravicovitch R., Peries J. Reverse transcriptase from simian foamy virus serotype 1: purification and characterization. J Virol. 1982 Nov;44(2):720–724. doi: 10.1128/jvi.44.2.720-724.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brewer L. C., Wells R. D. Mechanistic independence of avian myeloblastosis virus DNA polymerase and ribonuclease H. J Virol. 1974 Dec;14(6):1494–1502. doi: 10.1128/jvi.14.6.1494-1502.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fenner F. Classification and nomenclature of viruses. Second report of the International Committee on Taxonomy of Viruses. Intervirology. 1976;7(1-2):1–115. doi: 10.1159/000149938. [DOI] [PubMed] [Google Scholar]
  4. Fridlender B., Weissbach A. DNA polymerases of tumor virus: specific effect of ethidium bromide on the use of different synthetic templates. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3116–3119. doi: 10.1073/pnas.68.12.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grandgenett D. P., Gerard G. F., Green M. Ribonuclease H: a ubiquitous activity in virions of ribonucleic acid tumor viruses. J Virol. 1972 Dec;10(6):1136–1142. doi: 10.1128/jvi.10.6.1136-1142.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hirschman S. Z. Inhibitors of DNA polymerases of murine leukemia viruses: activity of ethidium bromide. Science. 1971 Jul 30;173(3995):441–443. doi: 10.1126/science.173.3995.441. [DOI] [PubMed] [Google Scholar]
  7. Leis J. P., Berkower I., Hurwitz J. Mechanism of action of ribonuclease H isolated from avian myeloblastosis virus and Escherichia coli. Proc Natl Acad Sci U S A. 1973 Feb;70(2):466–470. doi: 10.1073/pnas.70.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mölling K., Bolognesi D. P., Bauer H., Büsen W., Plassmann H. W., Hausen P. Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nat New Biol. 1971 Dec 22;234(51):240–243. doi: 10.1038/newbio234240a0. [DOI] [PubMed] [Google Scholar]
  9. Verma I. M. Studies on reverse transcriptase of RNA tumor viruses III. Properties of purified Moloney murine leukemia virus DNA polymerase and associated RNase H. J Virol. 1975 Apr;15(4):843–854. doi: 10.1128/jvi.15.4.843-854.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES