Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1983 Oct;48(1):149–156. doi: 10.1128/jvi.48.1.149-156.1983

Involvement of Escherichia coli K-12 DNA polymerase I in the growth of bacteriophage Mu.

D L McBeth, A L Taylor
PMCID: PMC255331  PMID: 6224939

Abstract

We examined several aspects of bacteriophage Mu development in Escherichia coli strains that carry mutations in the polA structural gene for DNA polymerase I (PolI). We found that polA mutants were markedly less efficient than PolI wild-type (PolI+) strains in their capacity to form stable Mu lysogens and to support normal lytic growth of phage Mu. The frequency of lysogenization was determined for polA mutants and their isogenic PolI+ derivatives, with the result that mutants were lysogenized 3 to 8 times less frequently than were PolI+ cells. In one-step growth experiments, we found that phage Mu grew less efficiently in polA cells than in PolI+ cells, as evidenced by a 50 to 100% increase in the latent period and a 20 to 40% decrease in mean burst size in mutant cells. A further difference noted in infected polA strains was a 10-fold reduction in the frequency of Mu-mediated transposition of chromosomal genes to an F plasmid. Pulse labeling and DNA-DNA hybridization assays to measure the rate of phage Mu DNA synthesis after the induction of thermosensitive prophages indicated that phage Mu replication began at about the same time in both polA and PolI+ strains, but proceeded at a slower rate in polA cells. We conclude that PolI is normally involved in the replication and integration of phage Mu. However, since phage Mu does not exhibit an absolute requirement for normal levels of PolI, it appears that residual PolI activity in the mutant strains, other cellular enzymes, or both can partially compensate for the absence of normal PolI activity.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allet B. Mu insertion duplicates a 5 base pair sequence at the host inserted site. Cell. 1979 Jan;16(1):123–129. doi: 10.1016/0092-8674(79)90193-4. [DOI] [PubMed] [Google Scholar]
  2. Calos M. P., Miller J. H. Transposable elements. Cell. 1980 Jul;20(3):579–595. doi: 10.1016/0092-8674(80)90305-0. [DOI] [PubMed] [Google Scholar]
  3. Clements M. B., Syvanen M. Isolation of polA mutation that affects transposition of insertion sequences and transposons. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):201–204. doi: 10.1101/sqb.1981.045.01.032. [DOI] [PubMed] [Google Scholar]
  4. Coelho A., Leach D., Maynard-Smith S., Symonds N. Transposition studies using a ColE1 derivative carrying bacteriophage Mu. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):323–328. doi: 10.1101/sqb.1981.045.01.045. [DOI] [PubMed] [Google Scholar]
  5. Coelho A., Maynard-Smith S., Symonds N. Abnormal cointegrate structures mediated by gene B mutants of phage Mu: their implications with regard to gene function. Mol Gen Genet. 1982;185(2):356–362. doi: 10.1007/BF00330812. [DOI] [PubMed] [Google Scholar]
  6. D'Alisa R. M., Carden G. A., 3rd, Carr H. S., Rosenkranz H. S. "Reversion" of DNA polymerase-deficient Escherichia coli. Mol Gen Genet. 1971;110(1):23–26. doi: 10.1007/BF00276041. [DOI] [PubMed] [Google Scholar]
  7. Desmet L., Faelen M., Lefèbvre N., Résibois A., Toussaint A., van Gijsegem F. Genetic study of Mu transposition and Mu-mediated chromosomal rearrangements. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):355–363. doi: 10.1101/sqb.1981.045.01.049. [DOI] [PubMed] [Google Scholar]
  8. Faelen M., Toussaint A. Bacteriophage Mu-1: a tool to transpose and to localize bacterial genes. J Mol Biol. 1976 Jul 5;104(3):525–539. doi: 10.1016/0022-2836(76)90118-2. [DOI] [PubMed] [Google Scholar]
  9. Foster T. J., Davis M. A., Roberts D. E., Takeshita K., Kleckner N. Genetic organization of transposon Tn10. Cell. 1981 Jan;23(1):201–213. doi: 10.1016/0092-8674(81)90285-3. [DOI] [PubMed] [Google Scholar]
  10. Grindley N. D., Sherratt D. J. Sequence analysis at IS1 insertion sites: models for transposition. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1257–1261. doi: 10.1101/sqb.1979.043.01.142. [DOI] [PubMed] [Google Scholar]
  11. Gross J., Gross M. Genetic analysis of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1166–1168. doi: 10.1038/2241166a0. [DOI] [PubMed] [Google Scholar]
  12. Hanawalt P. C., Cooper P. K., Ganesan A. K., Smith C. A. DNA repair in bacteria and mammalian cells. Annu Rev Biochem. 1979;48:783–836. doi: 10.1146/annurev.bi.48.070179.004031. [DOI] [PubMed] [Google Scholar]
  13. Harshey R. M., Bukhari A. I. A mechanism of DNA transposition. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1090–1094. doi: 10.1073/pnas.78.2.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harshey R. M., McKay R., Bukhari A. I. DNA intermediates in transposition of phage Mu. Cell. 1982 Jun;29(2):561–571. doi: 10.1016/0092-8674(82)90172-6. [DOI] [PubMed] [Google Scholar]
  15. Kahmann R., Kamp D. Nucleotide sequences of the attachment sites of bacteriophage Mu DNA. Nature. 1979 Jul 19;280(5719):247–250. doi: 10.1038/280247a0. [DOI] [PubMed] [Google Scholar]
  16. Kanai Y., Tanuma S., Sugimura T. Immunofluorescent staining of poly(ADP-ribose) in situ in HeLa cell chromosomes in the M phase. Proc Natl Acad Sci U S A. 1981 May;78(5):2801–2804. doi: 10.1073/pnas.78.5.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kleckner N. Transposable elements in prokaryotes. Annu Rev Genet. 1981;15:341–404. doi: 10.1146/annurev.ge.15.120181.002013. [DOI] [PubMed] [Google Scholar]
  18. Konrad E. B., Lehman I. R. A conditional lethal mutant of Escherichia coli K12 defective in the 5' leads to 3' exonuclease associated with DNA polymerase I. Proc Natl Acad Sci U S A. 1974 May;71(5):2048–2051. doi: 10.1073/pnas.71.5.2048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuempel P. L., Veomett G. E. A possible function of DNA polymerase in chromosome replication. Biochem Biophys Res Commun. 1970 Nov 25;41(4):973–980. doi: 10.1016/0006-291x(70)90180-4. [DOI] [PubMed] [Google Scholar]
  20. Leach D., Symonds N. The isolation and characterisation of a plaque-forming derivative of bacteriophage Mu carrying a fragment of Tn3 conferring ampicillin resistance. Mol Gen Genet. 1979 May 4;172(2):179–184. doi: 10.1007/BF00268280. [DOI] [PubMed] [Google Scholar]
  21. Lehman I. R., Chien J. R. Persistence of deoxyribonucleic acid polymerase I and its 5'--3' exonuclease activity in PolA mutants of Escherichia coli K12. J Biol Chem. 1973 Nov 25;248(22):7717–7723. [PubMed] [Google Scholar]
  22. Ljungquist E., Bukhari A. I. Behavior of bacteriophage Mu DNA upon infecton of Escherichia coli cells. J Mol Biol. 1979 Sep 25;133(3):339–357. doi: 10.1016/0022-2836(79)90397-8. [DOI] [PubMed] [Google Scholar]
  23. Ljungquist E., Bukhari A. I. State of prophage Mu DNA upon induction. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3143–3147. doi: 10.1073/pnas.74.8.3143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matson S. W., Capaldo-Kimball F. N., Bambara R. A. On the processive mechanism of Escherichia coli DNA Polymerase I. The polA5 mutation. J Biol Chem. 1978 Nov 10;253(21):7851–7856. [PubMed] [Google Scholar]
  25. McBeth D. L., Taylor A. L. Growth of bacteriophage Mu in Escherichia coli dnaA mutants. J Virol. 1982 Nov;44(2):555–564. doi: 10.1128/jvi.44.2.555-564.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Monk M., Peacey M., Gross J. D. Repair of damage induced by ultraviolet light in DNA polymerase-defective Escherichia coli cells. J Mol Biol. 1971 Jun 14;58(2):623–630. doi: 10.1016/0022-2836(71)90376-7. [DOI] [PubMed] [Google Scholar]
  27. Moses R. E., Richardson C. C. Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc Natl Acad Sci U S A. 1970 Oct;67(2):674–681. doi: 10.1073/pnas.67.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Okazaki R., Arisawa M., Sugino A. Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2954–2957. doi: 10.1073/pnas.68.12.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pato M. L., Waggoner B. T. Cellular location of Mu DNA replicas. J Virol. 1981 Apr;38(1):249–255. doi: 10.1128/jvi.38.1.249-255.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Résibois A., Toussaint A., Colet M. DNA structures induced by mini-Mu replication. Virology. 1982 Mar;117(2):329–340. doi: 10.1016/0042-6822(82)90473-1. [DOI] [PubMed] [Google Scholar]
  31. Sasakawa C., Uno Y., Yoshikawa M. The requirement for both DNA polymerase and 5' to 3' exonuclease activities of DNA polymerase I during Tn5 transposition. Mol Gen Genet. 1981;182(1):19–24. doi: 10.1007/BF00422761. [DOI] [PubMed] [Google Scholar]
  32. Shapiro J. A. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1933–1937. doi: 10.1073/pnas.76.4.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. TAYLOR A. L. BACTERIOPHAGE-INDUCED MUTATION IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1963 Dec;50:1043–1051. doi: 10.1073/pnas.50.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Toussaint A., Faelen M. The dependence of temperate phage Mu-1 upon replication functions of E. coli K12. Mol Gen Genet. 1974;131(3):209–214. doi: 10.1007/BF00267960. [DOI] [PubMed] [Google Scholar]
  35. Uyemura D., Eichler D. C., Lehman I. R. Biochemical characterization of mutant forms of DNA polymerase I from Escherichia coli. II. The polAex1 mutation. J Biol Chem. 1976 Jul 10;251(13):4085–4089. [PubMed] [Google Scholar]
  36. Waggoner B. T., Pato M. L. Early events in the replication of Mu prophage DNA. J Virol. 1978 Sep;27(3):587–594. doi: 10.1128/jvi.27.3.587-594.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES