Abstract
It has been shown previously that Drosophila cells infected with black beetle virus synthesize an early viral protein, protein A, a putative element of the viral RNA polymerase. Synthesis of protein A declines sharply by 6 h postinfection, whereas synthesis of viral coat protein alpha continues for at least 14 h. The early shutoff in protein A synthesis occurred despite the presence of equimolar proportions of the mRNAs for proteins A and alpha, RNAs 1 and 2, respectively. We have now been able to mimic this translational discrimination in a cell-free protein-synthesizing system prepared from infected or uninfected Drosophila cells, thus allowing further analysis of the mechanism by which translation of RNA 1 is selectively turned off. The results revealed no evidence for control by virus-encoded proteins or by virus-induced modification of mRNAs by the cell-free system. Rather, with increasing RNA concentration, viral RNA 1 was outcompeted by its genomic partner, RNA 2. This suggests that the early shutoff in intracellular synthesis of protein A is due to decreasing ability of RNA 1 to compete for a rate-controlling translational factor(s) as the concentration of viral RNAs accumulates within the infected cell.
Full text
PDF![116](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/8d49ff45f92f/jvirol00136-0132.png)
![117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/3c93bf7163bf/jvirol00136-0133.png)
![118](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/401f7cf9124d/jvirol00136-0134.png)
![119](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/cc506039eafd/jvirol00136-0135.png)
![120](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/3b242cdf00bf/jvirol00136-0136.png)
![121](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/6817a46cdd96/jvirol00136-0137.png)
![122](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/d13372c6e780/jvirol00136-0138.png)
![123](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/1e62a2965e2f/jvirol00136-0139.png)
![124](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/255432/02e450bd8050/jvirol00136-0140.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergmann J. E., Lodish H. F. A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control. J Biol Chem. 1979 Dec 10;254(23):11927–11937. [PubMed] [Google Scholar]
- Crump W. A., Moore N. F. In vivo and in vitro synthesis of the proteins expressed by the RNA of black beetle virus. Arch Virol. 1981;69(2):131–139. doi: 10.1007/BF01315156. [DOI] [PubMed] [Google Scholar]
- Di Segni G., Rosen H., Kaempfer R. Competition between alpha- and beta-globin messenger ribonucleic acids for eucaryotic initiation factor 2. Biochemistry. 1979 Jun 26;18(13):2847–2854. doi: 10.1021/bi00580a027. [DOI] [PubMed] [Google Scholar]
- Friesen P. D., Rueckert R. R. Black beetle virus: messenger for protein B is a subgenomic viral RNA. J Virol. 1982 Jun;42(3):986–995. doi: 10.1128/jvi.42.3.986-995.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friesen P. D., Rueckert R. R. Synthesis of Black Beetle Virus Proteins in Cultured Drosophila Cells: Differential Expression of RNAs 1 and 2. J Virol. 1981 Mar;37(3):876–886. doi: 10.1128/jvi.37.3.876-886.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friesen P., Scotti P., Longworth J., Rueckert R. Black beetle virus: propagation in Drosophila line 1 cells and an infection-resistant subline carrying endogenous black beetle virus-related particles. J Virol. 1980 Sep;35(3):741–747. doi: 10.1128/jvi.35.3.741-747.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher T. M., Friesen P. D., Rueckert R. R. Autonomous replication and expression of RNA 1 from black beetle virus. J Virol. 1983 May;46(2):481–489. doi: 10.1128/jvi.46.2.481-489.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godefroy-Colburn T., Thach R. E. The role of mRNA competition in regulating translation. IV. Kinetic model. J Biol Chem. 1981 Nov 25;256(22):11762–11773. [PubMed] [Google Scholar]
- Golini F., Thach S. S., Birge C. H., Safer B., Merrick W. C., Thach R. E. Competition between cellular and viral mRNAs in vitro is regulated by a messenger discriminatory initiation factor. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3040–3044. doi: 10.1073/pnas.73.9.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guarino L. A., Hruby D. E., Ball L. A., Kaesberg P. Translation of black beetle virus RNA and heterologous viral RNAs in cell-free lysates derived from Drosophila melanogaster. J Virol. 1981 Jan;37(1):500–505. doi: 10.1128/jvi.37.1.500-505.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guarino L. A., Kaesberg P. Isolation and Characterization of an RNA-Dependent RNA Polymerase from Black Beetle Virus-Infected Drosophila melanogaster Cells. J Virol. 1981 Nov;40(2):379–386. doi: 10.1128/jvi.40.2.379-386.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herson D., Schmidt A., Seal S., Marcus A., van Vloten-Doting L. Competitive mRNA translation in an in vitro system from wheat germ. J Biol Chem. 1979 Sep 10;254(17):8245–8249. [PubMed] [Google Scholar]
- Kabat D., Chappell M. R. Competition between globin messenger ribonucleic acids for a discriminating initiation factor. J Biol Chem. 1977 Apr 25;252(8):2684–2690. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lodish H. F., Froshauer S. Rates of initiation of protein synthesis by two purified species of vesicular stomatitis virus messenger RNA. J Biol Chem. 1977 Dec 25;252(24):8804–8811. [PubMed] [Google Scholar]
- Lodish H. F. Translational control of protein synthesis. Annu Rev Biochem. 1976;45:39–72. doi: 10.1146/annurev.bi.45.070176.000351. [DOI] [PubMed] [Google Scholar]
- Longworth J. F., Carey G. P. A small RNA virus with a divided genome from Heteronychus arator (F.) [Coleoperai Scarabaeidae]. J Gen Virol. 1976 Oct;33(1):31–40. doi: 10.1099/0022-1317-33-1-31. [DOI] [PubMed] [Google Scholar]
- Longworth J. F. Small isometric viruses of invertebrates. Adv Virus Res. 1978;23:103–157. doi: 10.1016/s0065-3527(08)60099-8. [DOI] [PubMed] [Google Scholar]
- Maitra U., Stringer E. A., Chaudhuri A. Initiation factors in protein biosynthesis. Annu Rev Biochem. 1982;51:869–900. doi: 10.1146/annurev.bi.51.070182.004253. [DOI] [PubMed] [Google Scholar]
- McKeehan W. L. Regulation of hemoglobin synthesis. Effect of concentration of messenger ribonucleic acid, ribosome subunits, initiation factors, and salts on ratio of alpha and beta chains synthesized in vitro. J Biol Chem. 1974 Oct 25;249(20):6517–6526. [PubMed] [Google Scholar]
- Newman J. F., Matthews T., Omilianowski D. R., Salerno T., Kaesberg P., Rueckert R. In vitro translation of the Two RNAs of Nodamura virus, a novel mammalian virus with a divided genome. J Virol. 1978 Jan;25(1):78–85. doi: 10.1128/jvi.25.1.78-85.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
- Ray B. K., Brendler T. G., Adya S., Daniels-McQueen S., Miller J. K., Hershey J. W., Grifo J. A., Merrick W. C., Thach R. E. Role of mRNA competition in regulating translation: further characterization of mRNA discriminatory initiation factors. Proc Natl Acad Sci U S A. 1983 Feb;80(3):663–667. doi: 10.1073/pnas.80.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revel M., Groner Y. Post-transcriptional and translational controls of gene expression in eukaryotes. Annu Rev Biochem. 1978;47:1079–1126. doi: 10.1146/annurev.bi.47.070178.005243. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER I. DIFFERENTIATION OF LARVAL DROSOPHILA EYE-ANTENNAL DISCS IN VITRO. J Exp Zool. 1964 Jun;156:91–103. doi: 10.1002/jez.1401560107. [DOI] [PubMed] [Google Scholar]
- Schneider I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 1972 Apr;27(2):353–365. [PubMed] [Google Scholar]
- Scott M. P., Pardue M. L. Translational control in lysates of Drosophila melanogaster cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3353–3357. doi: 10.1073/pnas.78.6.3353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih D. S., Kaesberg P. Translation of the RNAs of brome mosaic virus: the monocistronic nature of RNA1 and RNA2. J Mol Biol. 1976 May 5;103(1):77–88. doi: 10.1016/0022-2836(76)90053-x. [DOI] [PubMed] [Google Scholar]
- Shih D. S., Shih C. T., Kew O., Pallansch M., Rueckert R., Kaesberg P. Cell-free synthesis and processing of the proteins of poliovirus. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5807–5811. doi: 10.1073/pnas.75.12.5807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih D. S., Shih C. T., Zimmern D., Rueckert R. R., Kaesberg P. Translation of encephalomyocarditis virus RNA in reticulocyte lysates: kinetic analysis of the formation of virion proteins and a protein required for processing. J Virol. 1979 May;30(2):472–480. doi: 10.1128/jvi.30.2.472-480.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zagórski W. Translational regulation of expression of the brome-mosaic-virus RNA genome in vitro. Eur J Biochem. 1978 May 16;86(2):465–472. doi: 10.1111/j.1432-1033.1978.tb12329.x. [DOI] [PubMed] [Google Scholar]