Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1984 Feb;49(2):379–385. doi: 10.1128/jvi.49.2.379-385.1984

Identification of immunologically cross-reactive proteins of Sindbis virus: evidence for unique conformation of E1 glycoprotein from infected cells.

J A Wolcott, C J Wust, A Brown
PMCID: PMC255476  PMID: 6694261

Abstract

Hyperimmune antisera to purified Sindbis (SIN) or Semliki Forest (SF) virus were used to identify alphavirus-specific and cross-reactive proteins in virions and infected cells. The hyperimmune sera participated in homologous and cross-cytolysis of alphavirus-infected cells, and the use of monospecific antisera to SIN structural proteins suggested that E1 and E2 could serve as target proteins in cytolysis. Proteins from purified virions or infected cells were extracted with Nonidet P-40, denatured by procedures for sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose solid supports, and reacted with hyperimmune sera and 125I-labeled protein A (immunoblotting on denatured proteins). Alternatively, native proteins extracted by mild Nonidet P-40 treatment were precipitated with hyperimmune sera before denaturation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After immunoblotting, homologous antiserum reacted with the virus structural proteins E1, E2, capsid extracted from purified virions, and the counterparts of these proteins extracted from infected cells. In addition, PE2 and a 92,000-molecular-weight protein from infected cells reacted with homologous antiserum. These proteins were also immunoprecipitated with homologous antiserum. After immunoblotting, the Sindbis capsid protein was shown to be cross-reactive whether derived from purified virions or from infected cells; no cross-reactivity was observed with PE2 or E2 from either source, and the E1 glycoprotein was shown to be cross-reactive only when obtained from virions. However, the E1 glycoprotein could be cross-immunoprecipitated from infected cells (as well as from disrupted virions), and, in addition, capsid and a 92,000-molecular-weight protein were cross-immunoprecipitated from infected cells. These results suggest that a native conformation of the cell-associated E1 glycoproteins may be required for immunological cross-reactivity (immune precipitation), whereas virion but not cell-associated E1 retains immunological cross-reactivity after denaturation (immunoblot technique). The findings extend our previously published evidence which suggested that alphavirus maturation is accompanied by a change in immunological cross-reactivity with respect to E1.

Full text

PDF
379

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell J. W., Jr, Waite M. R. Envelope antigens of Sindbis virus in cells infected with temperature-sensitive mutants. J Virol. 1977 Feb;21(2):788–791. doi: 10.1128/jvi.21.2.788-791.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Dalrymple J. M., Schlesinger S., Russell P. K. Antigenic characterization of two sindbis envelope glycoproteins separated by isoelectric focusing. Virology. 1976 Jan;69(1):93–103. doi: 10.1016/0042-6822(76)90197-5. [DOI] [PubMed] [Google Scholar]
  5. Dalrymple J. M., Teramoto A. Y., Cardiff R. D., Russell P. K. Radioimmune precipitation of group A arboviruses. J Immunol. 1972 Sep;109(3):426–433. [PubMed] [Google Scholar]
  6. Erwin C., Brown D. T. Requirement of cell nucleus for Sindbis virus replication in cultured Aedes albopictus cells. J Virol. 1983 Feb;45(2):792–799. doi: 10.1128/jvi.45.2.792-799.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gates D., Brown A., Wust C. J. Comparison of specific and cross-reactive antigens of alphaviruses on virions and infected cells. Infect Immun. 1982 Jan;35(1):248–255. doi: 10.1128/iai.35.1.248-255.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  9. Ishida I., Simizu B. Evidence for the presence of the minor capsid protein of Western equine encephalitis virus. Arch Virol. 1981;67(2):159–164. doi: 10.1007/BF01318599. [DOI] [PubMed] [Google Scholar]
  10. Jones K. J., Waite M. R., Bose H. R. Cleavage of a viral envelope precursor during the morphogenesis of Sindbis virus. J Virol. 1974 Apr;13(4):809–817. doi: 10.1128/jvi.13.4.809-817.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaluza G. Effect of impaired glycosylation on the biosynthesis of Semliki forest virus glycoproteins. J Virol. 1975 Sep;16(3):602–612. doi: 10.1128/jvi.16.3.602-612.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaluza G., Rott R., Schwarz R. T. Carbohydrate-induced conformational changes of Semliki forest virus glycoproteins determine antigenicity. Virology. 1980 Apr 30;102(2):286–299. doi: 10.1016/0042-6822(80)90096-3. [DOI] [PubMed] [Google Scholar]
  13. King B., Wust C. J., Brown A. Antibody-dependent, complement-mediated homologous and cross-cytolysis of togavirus-infected cells. J Immunol. 1977 Oct;119(4):1289–1292. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Mullbacher A., Marshall I. D., Blanden R. V. Cross-reactive cytotoxic T cells to alphavirus infection. Scand J Immunol. 1979;10(4):291–296. doi: 10.1111/j.1365-3083.1979.tb01353.x. [DOI] [PubMed] [Google Scholar]
  17. Powell K. L., Courtney R. J. Polypeptide synthesized in herpes simplex virus type 2-infected HEp-2 cells. Virology. 1975 Jul;66(1):217–228. doi: 10.1016/0042-6822(75)90192-0. [DOI] [PubMed] [Google Scholar]
  18. Rice C. M., Strauss J. H. Association of sindbis virion glycoproteins and their precursors. J Mol Biol. 1982 Jan 15;154(2):325–348. doi: 10.1016/0022-2836(82)90067-5. [DOI] [PubMed] [Google Scholar]
  19. Roehrig J. T., Gorski D., Schlesinger M. J. Properties of monoclonal antibodies directed against the glycoproteins of Sindbis virus. J Gen Virol. 1982 Apr;59(Pt 2):421–425. doi: 10.1099/0022-1317-59-2-421. [DOI] [PubMed] [Google Scholar]
  20. Scheefers H., Scheefers-Borchel U., Edwards J., Brown D. T. Distribution of virus structural proteins and protein-protein interactions in plasma membrane of baby hamster kidney cells infected with Sindbis or vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7277–7281. doi: 10.1073/pnas.77.12.7277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schlesinger M. J., Schlesinger S. Large-molecular-weight precursors of sindbis virus proteins. J Virol. 1973 Jun;11(6):1013–1016. doi: 10.1128/jvi.11.6.1013-1016.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmaljohn A. L., Johnson E. D., Dalrymple J. M., Cole G. A. Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature. 1982 May 6;297(5861):70–72. doi: 10.1038/297070a0. [DOI] [PubMed] [Google Scholar]
  23. Smith-Owirodu A., Wust C. J., Gates D., Brown A. Cross-protection correlates with delayed antibody formation to challenge virus after immunization with Sindbis virus. J Gen Virol. 1980 Dec;51(Pt 2):351–357. doi: 10.1099/0022-1317-51-2-351. [DOI] [PubMed] [Google Scholar]
  24. Smith G. E., Summers M. D. Application of a novel radioimmunoassay to identify baculovirus structural proteins that share interspecies antigenic determinants. J Virol. 1981 Jul;39(1):125–137. doi: 10.1128/jvi.39.1.125-137.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith J. F., Brown D. T. Envelopments of Sindbis virus: synthesis and organization of proteins in cells infected with wild type and maturation-defective mutants. J Virol. 1977 Jun;22(3):662–678. doi: 10.1128/jvi.22.3.662-678.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weber K., Kuter D. J. Reversible denaturation of enzymes by sodium dodecyl sulfate. J Biol Chem. 1971 Jul 25;246(14):4504–4509. [PubMed] [Google Scholar]
  28. Wolcott J. A., Gates D. W., Wust C. J., Brown A. Cross-reactive, cell-associated antigen on L929 cells infected with temperature-sensitive mutants of sindbis virus. Infect Immun. 1982 May;36(2):704–709. doi: 10.1128/iai.36.2.704-709.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wolcott J. A., Wust C. J., Brown A. Immunization with one alphavirus cross-primes cellular and humoral immune responses to a second alphavirus. J Immunol. 1982 Sep;129(3):1267–1271. [PubMed] [Google Scholar]
  30. Wylie D. E., Klinman N. R. The murine B cell repertoire responsive to an influenza-infected syngeneic cell line. J Immunol. 1981 Jul;127(1):194–198. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES