Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1984 Mar;49(3):980–983. doi: 10.1128/jvi.49.3.980-983.1984

Herpes simplex virus binding and entry modulate cell surface protein mobility.

K S Rosenthal, M D Leuther, B G Barisas
PMCID: PMC255560  PMID: 6321777

Abstract

Fluorescence photobleaching recovery measurements showed that herpes simplex virus type 1 attachment to target cells rapidly induced an anchorage modulation of cell surface protein mobility, an activity mediated by the cytoskeleton and associated with the multivalent attachment of other ligands (e.g., cells, lectins, or anti-immunoglobulin) to cell surfaces. The restriction in cell surface protein mobility was released concurrently with virus penetration. The effects of attachment and penetration on cell surface protein mobility and cytoskeletal function are some of the earliest cellular changes induced by herpes simplex virus infection.

Full text

PDF
980

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeLuca N., Bzik D. J., Bond V. C., Person S., Snipes W. Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gb (VP7). Virology. 1982 Oct 30;122(2):411–423. doi: 10.1016/0042-6822(82)90240-9. [DOI] [PubMed] [Google Scholar]
  2. Dolyniuk M., Wolff E., Kieff E. Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol. 1976 Apr;18(1):289–297. doi: 10.1128/jvi.18.1.289-297.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dreesman G. R., Benyesh-Melnick M. Spectrum of human cytomegalovirus complement-fixing antigens. J Immunol. 1967 Dec;99(6):1106–1114. [PubMed] [Google Scholar]
  4. Gall W. E., Edelman G. M. Lateral diffusion of surface molecules in animal cells and tissues. Science. 1981 Aug 21;213(4510):903–905. doi: 10.1126/science.7196087. [DOI] [PubMed] [Google Scholar]
  5. HUANG A. S., WAGNER R. R. PENETRATION OF HERPES SIMPLEX VIRUS INTO HUMAN EPIDERMOID CELLS. Proc Soc Exp Biol Med. 1964 Aug-Sep;116:863–869. doi: 10.3181/00379727-116-29392. [DOI] [PubMed] [Google Scholar]
  6. Hummeler K., Tomassini N., Zajac B. Early events in herpes simplex virus infection: a radioautographic study. J Virol. 1969 Jul;4(1):67–74. doi: 10.1128/jvi.4.1.67-74.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Katz D., Straussman Y., Shahar A., Kohn A. Solid-phase immune electron microscopy (SPIEM) for rapid viral diagnosis. J Immunol Methods. 1980;38(1-2):171–174. doi: 10.1016/0022-1759(80)90341-5. [DOI] [PubMed] [Google Scholar]
  8. Kohn A. Early interactions of viruses with cellular membranes. Adv Virus Res. 1979;24:223–276. doi: 10.1016/s0065-3527(08)60395-4. [DOI] [PubMed] [Google Scholar]
  9. Leuther M. D., Barisas B. G., Peacock J. S., Krakauer H. Photobleaching recovery studies of membrane events accompanying lectin stimulation of rabbit lymphocytes. Biochem Biophys Res Commun. 1979 Jul 12;89(1):85–90. doi: 10.1016/0006-291x(79)90946-x. [DOI] [PubMed] [Google Scholar]
  10. Leuther M. D., Peacock J. S., Krakauer H., Barisas B. G. Changes in lectin receptor lateral mobilities accompany lymphocyte stimulation. J Immunol. 1981 Sep;127(3):893–899. [PubMed] [Google Scholar]
  11. Nicolaieff A., Obert G., van Regenmortel M. H. Detection of rotavirus by serological trapping on antibody-coated electron microscope grids. J Clin Microbiol. 1980 Jul;12(1):101–104. doi: 10.1128/jcm.12.1.101-104.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Peters R. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep. 1981 Aug;5(8):733–760. doi: 10.1016/0309-1651(81)90231-9. [DOI] [PubMed] [Google Scholar]
  13. Poste G., Nicolson G. L. Calcium ionophores A23187 and X537A affect cell agglutination by lectins and capping of lymphocyte surface immunoglobulins. Biochim Biophys Acta. 1976 Feb 19;426(1):148–155. doi: 10.1016/0005-2736(76)90436-3. [DOI] [PubMed] [Google Scholar]
  14. Rosenthal K. S., Shapiro H. M. Cell membrane potential changes follow Epstein-Barr virus binding. J Cell Physiol. 1983 Oct;117(1):39–42. doi: 10.1002/jcp.1041170107. [DOI] [PubMed] [Google Scholar]
  15. Sarmiento M., Haffey M., Spear P. G. Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7(B2) in virion infectivity. J Virol. 1979 Mar;29(3):1149–1158. doi: 10.1128/jvi.29.3.1149-1158.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schlessinger J., Elson E. L., Webb W. W., Yahara I., Rutishauser U., Edelman G. M. Receptor diffusion on cell surfaces modulated by locally bound concanavalin A. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1110–1114. doi: 10.1073/pnas.74.3.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith J. D., de Harven E. Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. II. An ultrastructural study of viral penetration. J Virol. 1974 Oct;14(4):945–956. doi: 10.1128/jvi.14.4.945-956.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Volsky D. J., Loyter A. Role of Ca++ in virus-induced membrane fusion. Ca++ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes. J Cell Biol. 1978 Aug;78(2):465–479. doi: 10.1083/jcb.78.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES