Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1987 Aug;61(8):2567–2572. doi: 10.1128/jvi.61.8.2567-2572.1987

Murine gamma interferon inhibits v-mos-induced fibroblast transformation via down regulation of retroviral gene expression.

B Seliger, G Kruppa, K Pfizenmaier
PMCID: PMC255700  PMID: 3037117

Abstract

Expression of the retroviral vector Neor myeloproliferative sarcoma virus (MPSV), which contains the v-mos oncogene and the neomycin resistance gene, leads to neoplastic transformation of mouse fibroblasts. Murine recombinant gamma interferon (IFN-gamma) could revert the neoplastic properties of established Neor MPSV-transformed cell lines to an apparently untransformed phenotype. In the presence of IFN-gamma, the Neor MPSV transformants showed a greater than 97% reduction of cloning efficiency in soft agar, strongly reduced proliferative capacity, and morphological changes. The IFN-gamma-induced phenotypic reversion was preceded by a rapid and selective reduction of all retroviral RNA species, apparently due to IFN-gamma action on the long terminal repeat of Neor MPSV. The mRNA levels of cellular genes either remained unaffected (beta-actin) or were even enhanced (H-2) in IFN-gamma-treated Neor MPSV-transformed cells. Upon removal of IFN-gamma, retroviral gene expression was fully recovered and a gradual reappearance of the transformed phenotype of these cells within 3 weeks was noted. These data show that IFN-gamma can cause a virtually complete, but reversible, inhibition of v-mos-induced neoplastic properties in transformed fibroblasts by selective down regulation of retroviral RNA levels.

Full text

PDF
2567

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakhanashvili M., Salzberg S. Transformation by murine sarcoma virus alters the sensitivity of clonal cells derived from NIH/3T3 mouse fibroblasts to interferon. Virology. 1984 Aug;137(1):143–149. doi: 10.1016/0042-6822(84)90017-5. [DOI] [PubMed] [Google Scholar]
  2. Brouty-Boyé D., Wybier-Franqui J., Calvo C., Feunteun J., Gresser I. Reversibility of the transformed and neoplastic phenotype. IV. Effects of long-term interferon treatment of C3H/10T1/2 cells transformed by methylcholanthrene and SV40 virus. Int J Cancer. 1984 Jul 15;34(1):107–112. doi: 10.1002/ijc.2910340119. [DOI] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Clemens M. J., McNurlan M. A. Regulation of cell proliferation and differentiation by interferons. Biochem J. 1985 Mar 1;226(2):345–360. doi: 10.1042/bj2260345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clemens M. Interferons and oncogenes. Nature. 1985 Feb 14;313(6003):531–532. doi: 10.1038/313531a0. [DOI] [PubMed] [Google Scholar]
  6. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  7. Colbère-Garapin F., Horodniceanu F., Kourilsky P., Garapin A. C. A new dominant hybrid selective marker for higher eukaryotic cells. J Mol Biol. 1981 Jul 25;150(1):1–14. doi: 10.1016/0022-2836(81)90321-1. [DOI] [PubMed] [Google Scholar]
  8. Einat M., Resnitzky D., Kimchi A. Close link between reduction of c-myc expression by interferon and, G0/G1 arrest. Nature. 1985 Feb 14;313(6003):597–600. doi: 10.1038/313597a0. [DOI] [PubMed] [Google Scholar]
  9. Emanoil-Ravier R., Pochart F., Canivet M., Garcette M., Tobaly-Tapiero J., Peries J. Interferon-mediated regulation of myc and Ki-ras oncogene expression in long-term-treated murine viral transformed cells. J Interferon Res. 1985 Fall;5(4):613–619. doi: 10.1089/jir.1985.5.613. [DOI] [PubMed] [Google Scholar]
  10. Esteban M., Paez E. Antiviral and antiproliferative properties of interferons: mechanism of action. Prog Med Virol. 1985;32:159–173. [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Friedman R. M., Vogel S. N. Interferons with special emphasis on the immune system. Adv Immunol. 1983;34:97–140. doi: 10.1016/s0065-2776(08)60378-8. [DOI] [PubMed] [Google Scholar]
  13. Hayashi H., Tanaka K., Jay F., Khoury G., Jay G. Modulation of the tumorigenicity of human adenovirus-12-transformed cells by interferon. Cell. 1985 Nov;43(1):263–267. doi: 10.1016/0092-8674(85)90031-5. [DOI] [PubMed] [Google Scholar]
  14. Huleihel M., Marvit J., Aboud M. The mechanism of interferon effect on cell transformation by murine sarcoma virus. Int J Cancer. 1983 Jun 15;31(6):737–743. doi: 10.1002/ijc.2910310611. [DOI] [PubMed] [Google Scholar]
  15. Jonak G. J., Knight E., Jr Selective reduction of c-myc mRNA in Daudi cells by human beta interferon. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1747–1750. doi: 10.1073/pnas.81.6.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jähner D., Jaenisch R. Integration of Moloney leukaemia virus into the germ line of mice: correlation between site of integration and virus activation. Nature. 1980 Oct 2;287(5781):456–458. doi: 10.1038/287456a0. [DOI] [PubMed] [Google Scholar]
  17. Kelly J. M., Gilbert C. S., Stark G. R., Kerr I. M. Differential regulation of interferon-induced mRNAs and c-myc mRNA by alpha- and gamma-interferons. Eur J Biochem. 1985 Dec 2;153(2):367–371. doi: 10.1111/j.1432-1033.1985.tb09312.x. [DOI] [PubMed] [Google Scholar]
  18. Kirchner H. Interferons, a group of multiple lymphokines. Springer Semin Immunopathol. 1984;7(4):347–374. doi: 10.1007/BF00201966. [DOI] [PubMed] [Google Scholar]
  19. Knight E., Jr, Anton E. D., Fahey D., Friedland B. K., Jonak G. J. Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1151–1154. doi: 10.1073/pnas.82.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kollek R., Stocking C., Smadja-Joffe F., Ostertag W. Molecular cloning and characterization of a leukemia-inducing myeloproliferative sarcoma virus and two of its temperature-sensitive mutants. J Virol. 1984 Jun;50(3):717–724. doi: 10.1128/jvi.50.3.717-724.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krönke M., Leonard W. J., Depper J. M., Arya S. K., Wong-Staal F., Gallo R. C., Waldmann T. A., Greene W. C. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5214–5218. doi: 10.1073/pnas.81.16.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lalanne J. L., Bregegere F., Delarbre C., Abastado J. P., Gachelin G., Kourilsky P. Comparison of nucleotide sequences of mRNAs belonging to the mouse H-2 multigene family. Nucleic Acids Res. 1982 Feb 11;10(3):1039–1049. doi: 10.1093/nar/10.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MACPHERSON I., MONTAGNIER L. AGAR SUSPENSION CULTURE FOR THE SELECTIVE ASSAY OF CELLS TRANSFORMED BY POLYOMA VIRUS. Virology. 1964 Jun;23:291–294. doi: 10.1016/0042-6822(64)90301-0. [DOI] [PubMed] [Google Scholar]
  24. Oskarsson M., McClements W. L., Blair D. G., Maizel J. V., Vande Woude G. F. Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma virus. Science. 1980 Mar 14;207(4436):1222–1224. doi: 10.1126/science.6243788. [DOI] [PubMed] [Google Scholar]
  25. Ostertag W., Freshney M., Vehmeyer K., Jasmin C., Rutter G. Action of temperature-sensitive mutants of myeloproliferative sarcoma virus suggests that fibroblast-transforming and hematopoietic transforming viral properties are related. J Virol. 1984 Jan;49(1):253–261. doi: 10.1128/jvi.49.1.253-261.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ostertag W., Seliger B., Kollek R., Stocking C., Bergholz U., Smadja-Joffe F. The myeloproliferative sarcoma virus retains transforming functions after introduction of a dominant selectable marker gene. J Gen Virol. 1986 Jul;67(Pt 7):1361–1371. doi: 10.1099/0022-1317-67-7-1361. [DOI] [PubMed] [Google Scholar]
  27. Ostertag W., Vehmeyer K., Fagg B., Pragnell I. B., Paetz W., Le Bousse M. C., Smadja-Joffe F., Klein B., Jasmin C., Eisen H. Myeloproliferative virus, a cloned murine sarcoma virus with spleen focus-forming properties in adult mice. J Virol. 1980 Feb;33(2):573–582. doi: 10.1128/jvi.33.2.573-582.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Papkoff J., Verma I. M., Hunter T. Detection of a transforming gene product in cells transformed by Moloney murine sarcoma virus. Cell. 1982 Jun;29(2):417–426. doi: 10.1016/0092-8674(82)90158-1. [DOI] [PubMed] [Google Scholar]
  29. Perucho M., Esteban M. Inhibitory effect of interferon on the genetic and oncogenic transformation by viral and cellular genes. J Virol. 1985 Apr;54(1):229–232. doi: 10.1128/jvi.54.1.229-232.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raj N. B., Pitha P. M. Two levels of regulation of beta-interferon gene expression in human cells. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3923–3927. doi: 10.1073/pnas.80.13.3923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Samid D., Chang E. H., Friedman R. M. Biochemical correlates of phenotypic reversion in interferon-treated mouse cells transformed by a human oncogene. Biochem Biophys Res Commun. 1984 Feb 29;119(1):21–28. doi: 10.1016/0006-291x(84)91612-7. [DOI] [PubMed] [Google Scholar]
  32. Samid D., Chang E. H., Friedman R. M. Development of transformed phenotype induced by a human ras oncogene is inhibited by interferon. Biochem Biophys Res Commun. 1985 Jan 16;126(1):509–516. doi: 10.1016/0006-291x(85)90635-7. [DOI] [PubMed] [Google Scholar]
  33. Samid D., Flessate D. M., Greene J. J., Chang E. H., Friedman R. M. Mechanisms of antioncogenic activity of interferon. Prog Clin Biol Res. 1985;202:203–209. [PubMed] [Google Scholar]
  34. Sergiescu D., Gerfaux J., Joret A. M., Chany C. Persistent expression of v-mos oncogene in transformed cells that revert to nonmalignancy after prolonged treatment with interferon. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5764–5768. doi: 10.1073/pnas.83.16.5764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Turek L. P., Byrne J. C., Lowy D. R., Dvoretzky I., Friedman R. M., Howley P. M. Interferon induces morphologic reversion with elimination of extrachromosomal viral genomes in bovine papillomavirus-transformed mouse cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7914–7918. doi: 10.1073/pnas.79.24.7914. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES