Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1984 Jun;50(3):929–938. doi: 10.1128/jvi.50.3.929-938.1984

Location of DNA-binding proteins and disulfide-linked proteins in vaccinia virus structural elements.

Y Ichihashi, M Oie, T Tsuruhara
PMCID: PMC255755  PMID: 6539380

Abstract

Treatment with sodium dodecyl sulfate (SDS) converted the vaccinia virus strain IHD-J into particles of two types: (i) ghosts which possessed a thin-membrane vesicle derived from basement part of the virus membrane with attached lateral bodies and a membranous structure derived from the core wall and (ii) aggregates of a DNA-nucleoprotein eluted from the core. These particles lacked lipids, and all the viral phospholipids were detected in the SDS-soluble fraction. The viral membrane was composed of an SDS-soluble coat layer and the basement membrane, and the basement membrane was maintained by a mechanism other than the lipid bilayer. By comparisons of protein species in morphologically distinct subviral particles prepared by several solubilizing methods, protein compositions of viral structural elements were suggested as follows: 25,000-molecular-weight viral protein-17,000-molecular-weight viral protein ( VP25K - VP17K ), viral basement membrane; VP13 . 8K , major component of the lateral body; VP70K , VP69K , VP66K , and VP64K , minor components of the lateral body; VP61K , outer layer of core wall; VP57K - VP22K , inner layer of core wall; and VP27K - VP13K , nucleoprotein. These structural elements found in the SDS-insoluble particles dissolved in the same SDS solution under reducing conditions, indicating that the disulfide linkages seem to have a principal role in maintaining their morphological integrity. VP57K , VP27K , VP13 . 8K , and VP13K were revealed to possess affinity for DNA. Denatured calf thymus DNA and viral DNA in double- or single-stranded form associated equally well with these proteins, but RNA did not bind. Therefore, it was strongly suggested that disulfide-linked VP27K - VP13K represented the nucleoproteins of vaccinia virus. A structural model of vaccinia virus is proposed and discussed.

Full text

PDF
929

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blough H. A., Tiffany J. M. Lipids in viruses. Adv Lipid Res. 1973;11:267–339. [PubMed] [Google Scholar]
  2. Boisvert J., Yamamoto T. Effect of detergents and chemicals on purified vaccinia virus: analysis by SDS polyacrylamide gel electrophoresis and electron microscopy1,2. Can J Microbiol. 1977 Mar;23(3):240–252. doi: 10.1139/m77-036. [DOI] [PubMed] [Google Scholar]
  3. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang A., Metz D. H. Further investigations on the mode of entry of vaccinia virus into cells. J Gen Virol. 1976 Aug;32(2):275–282. doi: 10.1099/0022-1317-32-2-275. [DOI] [PubMed] [Google Scholar]
  5. DALES S. The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol. 1963 Jul;18:51–72. doi: 10.1083/jcb.18.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dales S., Mosbach E. H. Vaccinia as a model for membrane biogenesis. Virology. 1968 Aug;35(4):564–583. doi: 10.1016/0042-6822(68)90286-9. [DOI] [PubMed] [Google Scholar]
  7. Easterbrook K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J Ultrastruct Res. 1966 Mar;14(5):484–496. doi: 10.1016/s0022-5320(66)80077-1. [DOI] [PubMed] [Google Scholar]
  8. Holowczak J. A., Thomas V. I., Flores L. Isolation and characterization of vaccinia virus "nucleoids". Virology. 1975 Oct;67(2):506–519. doi: 10.1016/0042-6822(75)90451-1. [DOI] [PubMed] [Google Scholar]
  9. Ichihashi Y., Oie M. Adsorption and penetration of the trypsinized vaccinia virion. Virology. 1980 Feb;101(1):50–60. doi: 10.1016/0042-6822(80)90482-1. [DOI] [PubMed] [Google Scholar]
  10. Ichihashi Y., Tsuruhara T., Oie M. The effect of proteolytic enzymes on the infectivity of vaccinia virus. Virology. 1982 Oct 30;122(2):279–289. doi: 10.1016/0042-6822(82)90227-6. [DOI] [PubMed] [Google Scholar]
  11. Ichihashi Y. Unit Complex of vaccinia polypeptides linked by disulfide bridges. Virology. 1981 Aug;113(1):277–284. doi: 10.1016/0042-6822(81)90154-9. [DOI] [PubMed] [Google Scholar]
  12. JOKLIK W. K. The purification fo four strains of poxvirus. Virology. 1962 Sep;18:9–18. doi: 10.1016/0042-6822(62)90172-1. [DOI] [PubMed] [Google Scholar]
  13. Kao S. Y., Ressner E., Kates J., Bauer W. R. Purification and characterization of a superhelix binding protein from vaccinia virus. Virology. 1981 Jun;111(2):500–508. doi: 10.1016/0042-6822(81)90352-4. [DOI] [PubMed] [Google Scholar]
  14. Katz E., Moss B. Formation of a vaccinia virus structural polypeptide from a higher molecular weight precursor: inhibition by rifampicin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):677–684. doi: 10.1073/pnas.66.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCrae M. A., Szilágyi J. F. Preparation and characterisation of a subviral particle of vaccinia virus containing the DNA-dependent RNA polymerase activity. Virology. 1975 Nov;68(1):234–244. doi: 10.1016/0042-6822(75)90164-6. [DOI] [PubMed] [Google Scholar]
  16. Medzon E. L., Bauer H. Structural features of vaccinia virus revealed by negative staining, sectioning, and freeze-etching. Virology. 1970 Apr;40(4):860–867. doi: 10.1016/0042-6822(70)90132-7. [DOI] [PubMed] [Google Scholar]
  17. Morgan C. Vaccinia virus reexamined: development and release. Virology. 1976 Aug;73(1):43–58. doi: 10.1016/0042-6822(76)90059-3. [DOI] [PubMed] [Google Scholar]
  18. Nowakowski M., Kates J., Bauer W. Isolation of two DNA-binding proteins from the intracellular replication complex of vaccinia virus. Virology. 1978 Feb;84(2):260–267. doi: 10.1016/0042-6822(78)90246-5. [DOI] [PubMed] [Google Scholar]
  19. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  20. Oie M., Ichihashi Y. Characterization of vaccinia polypeptides. Virology. 1981 Aug;113(1):263–276. doi: 10.1016/0042-6822(81)90153-7. [DOI] [PubMed] [Google Scholar]
  21. PETERS D., MUELLER G. THE FINE STRUCTURE OF THE DNA-CONTAINING CORE OF VACCINIA VIRUS. Virology. 1963 Oct;21:267–269. doi: 10.1016/0042-6822(63)90267-8. [DOI] [PubMed] [Google Scholar]
  22. Pogo B. G., Katz J. R., Dales S. Biogenesis of poxviruses: synthesis and phosphorylation of a basic protein associated with the DNA. Virology. 1975 Apr;64(2):531–543. doi: 10.1016/0042-6822(75)90130-0. [DOI] [PubMed] [Google Scholar]
  23. Sarov I., Joklik W. K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology. 1972 Nov;50(2):579–592. doi: 10.1016/0042-6822(72)90409-6. [DOI] [PubMed] [Google Scholar]
  24. Soloski M. J., Cabrera C. V., Esteban M., Holowczak J. A. Studies concerning the structure and organization of the vaccinia virus nucleoid. I. Isolation and characterization of subviral particles prepared by treating virions with guanidine-HCL, nonidet-P40, and 2-mercaptoethanol. Virology. 1979 Dec;99(2):209–217. doi: 10.1016/0042-6822(79)90001-1. [DOI] [PubMed] [Google Scholar]
  25. Soloski M. J., Holowczak J. A. Characterization of supercoiled nucleoprotein complexes released from detergent-treated vaccinia virions. J Virol. 1981 Feb;37(2):770–783. doi: 10.1128/jvi.37.2.770-783.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stern W., Dales S. Biogenesis of vaccinia: concerning the origin of the envelope phospholipids. Virology. 1974 Dec;62(2):293–306. doi: 10.1016/0042-6822(74)90393-6. [DOI] [PubMed] [Google Scholar]
  27. WESTWOOD J. C., HARRIS W. J., ZWARTOUW H. T., TITMUSS D. H., APPLEYARD G. STUDIES ON THE STRUCTURE OF VACCINIA VIRUS. J Gen Microbiol. 1964 Jan;34:67–78. doi: 10.1099/00221287-34-1-67. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES