Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1987 Oct;61(10):3254–3265. doi: 10.1128/jvi.61.10.3254-3265.1987

Aberrant regulation of synthesis and degradation of viral proteins in coliphage lambda-infected UV-irradiated cells and in minicells.

J E Shaw, C Epp, M L Pearson, J N Reeve
PMCID: PMC255906  PMID: 2957511

Abstract

The patterns of bacteriophage lambda proteins synthesized in UV-irradiated Escherichia coli cells and in anucleate minicells are significantly different; both systems exhibit aberrations of regulation in lambda gene expression. In unirradiated cells or cells irradiated with low UV doses (less than 600 J/m2), regulation of lambda protein synthesis is controlled by the regulatory proteins CI, N, CII, CIII, Cro, and Q. As the UV dose increases, activation of transcription of the cI, rexA, and int genes by CII and CIII proteins fails to occur and early protein synthesis, normally inhibited by the action of Cro, continues. After high UV doses (greater than 2,000 J/m2), late lambda protein synthesis does not occur. Progression through the sequence of regulatory steps in lambda gene expression is slower in infected minicells. In minicells, there is no detectable cII- and cIII-dependent synthesis of CI, RexA, or Int proteins and inhibition of early protein synthesis by Cro activity is always incomplete. The synthesis of early b region proteins is not subject to control by CI, N, or Cro proteins, and evidence is presented suggesting that, in minicells, transcription of the early b region is initiated at a promoter(s) within the b region. Proteolytic cleavage of the regulatory proteins O and N and of the capsid proteins C, B, and Nu3 is much reduced in infected minicells. Exposure of minicells to very high UV doses before infection does not completely inhibit late lambda protein synthesis.

Full text

PDF
3254

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Gottesman M., De Crombrugghe B. Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2534–2538. doi: 10.1073/pnas.71.6.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allet B., Katagiri K. J., Gesteland R. F. Characterization of polypeptides made in vitro from bacteriophage lambda DNA. J Mol Biol. 1973 Aug 25;78(4):589–600. doi: 10.1016/0022-2836(73)90281-7. [DOI] [PubMed] [Google Scholar]
  3. Amann E., Reeve J. N. DNA synthesis in toluene-treated bacteriophage-infected minicells or Bacillus subtilis. Biochim Biophys Acta. 1978 Aug 23;520(1):82–87. doi: 10.1016/0005-2787(78)90009-6. [DOI] [PubMed] [Google Scholar]
  4. Belfort M., Noff D., Oppenheim A. B. Isolation, characterization and deletion mapping of amber mutations in the cll gene of phage lambda. Virology. 1975 Jan;63(1):147–159. doi: 10.1016/0042-6822(75)90380-3. [DOI] [PubMed] [Google Scholar]
  5. Belfort M., Wulff D. L. An analysis of the processes of infection and induction of E. coli mutant hfl-1 by bacteriophage lambda. Virology. 1973 Sep;55(1):183–192. doi: 10.1016/s0042-6822(73)81020-7. [DOI] [PubMed] [Google Scholar]
  6. Biswal N., Kleinschmidt A. K., Spatz H. C., Trautner T. A. Physical properties of the DNA of bacteriophage SP50. Mol Gen Genet. 1967;100(1):39–55. doi: 10.1007/BF00425774. [DOI] [PubMed] [Google Scholar]
  7. Botchan P. An electron microscopic comparison of transcription on linear and superhelical DNA. J Mol Biol. 1976 Jul 25;105(1):161–176. doi: 10.1016/0022-2836(76)90201-1. [DOI] [PubMed] [Google Scholar]
  8. Bovre K., Szybalski W. Patterns of convergent and overlapping transcription within the b2 region of coliphage lambda. Virology. 1969 Aug;38(4):614–626. doi: 10.1016/0042-6822(69)90181-0. [DOI] [PubMed] [Google Scholar]
  9. Brunschede H., Bremer H. Protein synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):25–38. doi: 10.1016/0022-2836(69)90123-5. [DOI] [PubMed] [Google Scholar]
  10. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  11. Crawford L. V., Gesteland R. F. Synthesis of polyoma proteins in vitro. J Mol Biol. 1973 Mar 15;74(4):627–634. doi: 10.1016/0022-2836(73)90053-3. [DOI] [PubMed] [Google Scholar]
  12. Dambly C., Couturier M. A minor Q-independent pathway for the expression of the late genes in bacteriophage lambda. Mol Gen Genet. 1971;113(3):244–250. doi: 10.1007/BF00339545. [DOI] [PubMed] [Google Scholar]
  13. Dottin R. P., Cutler L. S., Pearson M. L. Repression and autogenous stimulation in vitro by bacteriophage lambda repressor. Proc Natl Acad Sci U S A. 1975 Mar;72(3):804–808. doi: 10.1073/pnas.72.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eisen H., Brachet P., Pereira da Silva L., Jacob F. Regulation of repressor expression in lambda. Proc Natl Acad Sci U S A. 1970 Jul;66(3):855–862. doi: 10.1073/pnas.66.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fassler J. S., Tessman I. Relation between UV suppression of polarity in phi X174 and UV sensitivity of rho mutants. J Virol. 1981 Mar;37(3):955–962. doi: 10.1128/jvi.37.3.955-962.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frazer A. C., Curtiss R., 3rd Production, properties and utility of bacterial minicells. Curr Top Microbiol Immunol. 1975;69:1–84. doi: 10.1007/978-3-642-50112-8_1. [DOI] [PubMed] [Google Scholar]
  17. Giphart-Gassler M., Wijffelman C., Reeve J. Structural polypeptides and products of late genes of bacteriophage Mu: characterization and functional aspects. J Mol Biol. 1981 Jan 5;145(1):139–163. doi: 10.1016/0022-2836(81)90338-7. [DOI] [PubMed] [Google Scholar]
  18. Goldberg A. R., Howe M. New mutations in the S cistron of bacteriophage lambda affecting host cell lysis. Virology. 1969 May;38(1):200–202. doi: 10.1016/0042-6822(69)90148-2. [DOI] [PubMed] [Google Scholar]
  19. Gottesman S., Gottesman M., Shaw J. E., Pearson M. L. Protein degradation in E. coli: the lon mutation and bacteriophage lambda N and cII protein stability. Cell. 1981 Apr;24(1):225–233. doi: 10.1016/0092-8674(81)90518-3. [DOI] [PubMed] [Google Scholar]
  20. Greenblatt J. Regulation of the expression of the N gene of bacteriophage lambda. Proc Natl Acad Sci U S A. 1973 Feb;70(2):421–424. doi: 10.1073/pnas.70.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grzesiuk E., Taylor K. Block between early and late transcription of coliphage lambda in minicells. Virology. 1977 Dec;83(2):329–336. doi: 10.1016/0042-6822(77)90178-7. [DOI] [PubMed] [Google Scholar]
  22. Gussin G. N., Peterson V. Isolation and properties of rex - mutants of bacteriophage lambda. J Virol. 1972 Oct;10(4):760–765. doi: 10.1128/jvi.10.4.760-765.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hendrix R. W., Casjens S. R. Assembly of bacteriophage lambda heads: protein processing and its genetic control in petit lambda assembly. J Mol Biol. 1975 Jan 15;91(2):187–199. doi: 10.1016/0022-2836(75)90159-x. [DOI] [PubMed] [Google Scholar]
  24. Hendrix R. W., Casjens S. R. Protein cleavage in bacteriophage lambda tail assembly. Virology. 1974 Sep;61(1):156–159. doi: 10.1016/0042-6822(74)90250-5. [DOI] [PubMed] [Google Scholar]
  25. Hendrix R. W., Casjens S. R. Protein fusion: a novel reaction in bacteriophage lambda head assembly. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1451–1455. doi: 10.1073/pnas.71.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Herskowitz I., Signer E. R. A site essential for expression of all late genes in bacteriophage lambda. J Mol Biol. 1970 Feb 14;47(3):545–556. doi: 10.1016/0022-2836(70)90321-9. [DOI] [PubMed] [Google Scholar]
  27. Hopkins A. S., Murray N. E., Brammar W. J. Characterization of lambdatrp-transducing bacteriophages made in vitro. J Mol Biol. 1976 Nov 15;107(4):549–569. doi: 10.1016/s0022-2836(76)80082-4. [DOI] [PubMed] [Google Scholar]
  28. Hoyt M. A., Knight D. M., Das A., Miller H. I., Echols H. Control of phage lambda development by stability and synthesis of cII protein: role of the viral cIII and host hflA, himA and himD genes. Cell. 1982 Dec;31(3 Pt 2):565–573. doi: 10.1016/0092-8674(82)90312-9. [DOI] [PubMed] [Google Scholar]
  29. Jaskunas S. R., Lindahl L., Nomura M. Specialized transducing phages for ribosomal protein genes of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jan;72(1):6–10. doi: 10.1073/pnas.72.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jones B. B., Chan H., Rothstein S., Wells R. D., Reznikoff W. S. RNA polymerase binding sites in lambdaplac5 DNA. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4914–4918. doi: 10.1073/pnas.74.11.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jones M. O., Herskowitz I. Mutants of bacteriophage lambda which do not requre the cIII gene for efficient lysogenization. Virology. 1978 Jul 15;88(2):199–212. doi: 10.1016/0042-6822(78)90277-5. [DOI] [PubMed] [Google Scholar]
  32. KELLENBERGER G., ZICHICHI M. L., WEIGLE J. A mutation affecting the DNA content of bacteriophage lambda and its lysogenizing properties. J Mol Biol. 1961 Aug;3:399–408. doi: 10.1016/s0022-2836(61)80053-3. [DOI] [PubMed] [Google Scholar]
  33. Katzir N., Oppenheim A., Belfort M., Oppenheim A. B. Activation of the lambda int gene by the cii and ciii gene products. Virology. 1976 Oct 15;74(2):324–331. doi: 10.1016/0042-6822(76)90339-1. [DOI] [PubMed] [Google Scholar]
  34. Konrad M. W. Dependence of "early" lambda bacteriophage RNA synthesis on bacteriophage-directed protein synthesis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):171–178. doi: 10.1073/pnas.59.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kravchenko V. V., Vasilenko S. K., Grachev M. A. A rightward promoter to the left of the att site of lambda phage DNA: possible participant in site-specific recombination. Gene. 1979 Nov;7(3-4):181–195. doi: 10.1016/0378-1119(79)90045-3. [DOI] [PubMed] [Google Scholar]
  36. Levy S. B. R factor proteins synthesized in Escherichia coli minicells: incorporation studies with different R factors and detection of deoxyribonucleic acid-binding proteins. J Bacteriol. 1974 Dec;120(3):1451–1463. doi: 10.1128/jb.120.3.1451-1463.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Levy S. B. Very stable prokaryotic messenger RNA in chromosomeless Escherichia coli minicells. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2900–2904. doi: 10.1073/pnas.72.8.2900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lica L., Ray D. S. Replication of bacteriophage M13. XII. In vivo cross-linking of a phage-specific DNA binding protein to the single-stranded DNA of bacteriophage M13 by ultraviolet irradiation. J Mol Biol. 1977 Sep;115(1):45–59. doi: 10.1016/0022-2836(77)90245-5. [DOI] [PubMed] [Google Scholar]
  39. Lovinger G. G., Ling H. P., Gilden R. V., Hatanaka M. Effect of UV Light on RNA-Directed DNA Polymerase Activity of Murine Oncornaviruses. J Virol. 1975 May;15(5):1273–1275. doi: 10.1128/jvi.15.5.1273-1275.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Luk K. C., Mark K. K. The phage promoter responsible for the expression of the inserted beta-galactosidase gene in bacteriophage lambda plac5. Mol Gen Genet. 1980;178(3):555–560. doi: 10.1007/BF00337860. [DOI] [PubMed] [Google Scholar]
  41. McMacken R., Mantei N., Butler B., Joyner A., Echols H. Effect of mutations in the c2 and c3 genes of bacteriophage lambda on macromolecular synthesis in infected cells. J Mol Biol. 1970 May 14;49(3):639–655. doi: 10.1016/0022-2836(70)90288-3. [DOI] [PubMed] [Google Scholar]
  42. Mertens G., Amann E., Reeve J. N. Bacteriophage SPP1 polypeptides synthesized in infected minicells and in vitro. Mol Gen Genet. 1979;172(3):271–279. doi: 10.1007/BF00271726. [DOI] [PubMed] [Google Scholar]
  43. Michalke H., Bremer H. RNA synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):1–23. doi: 10.1016/0022-2836(69)90122-3. [DOI] [PubMed] [Google Scholar]
  44. Nijkamp H. J., Bovre K., Szybalski W. Regulation of leftward transcription in the J-b2-att region of coliphage lambda. Mol Gen Genet. 1971;111(1):22–34. doi: 10.1007/BF00286551. [DOI] [PubMed] [Google Scholar]
  45. Oppenheim A. B., Gottesman S., Gottesman M. Regulation of bacteriophage lambda int gene expression. J Mol Biol. 1982 Jul 5;158(3):327–346. doi: 10.1016/0022-2836(82)90201-7. [DOI] [PubMed] [Google Scholar]
  46. Oppenheim A., Belfort M., Katzir N., Kass N., Oppenheim A. B. Interaction of cII, cIII, and cro gene products in the regulation of early and late functions of phage lambda. Virology. 1977 Jun 15;79(2):426–436. doi: 10.1016/0042-6822(77)90368-3. [DOI] [PubMed] [Google Scholar]
  47. Oppenheim A., Oppenheim A. B. Regulation of the int gene of bacteriophage lambda: activation by the cII and cIII gene products and the role of the Pi and Pl promoters. Mol Gen Genet. 1978 Sep 20;165(1):39–46. doi: 10.1007/BF00270374. [DOI] [PubMed] [Google Scholar]
  48. Ponta H., Pfennig-Yeh M. L., Wagner E. F., Schweiger M., Herrlich P. Radiation sensitivity of messenger RNA. Mol Gen Genet. 1979 Aug;175(1):13–17. doi: 10.1007/BF00267850. [DOI] [PubMed] [Google Scholar]
  49. Ponta H., Reeve J. N., Pfennig-Yeh M., Hirsch-Kauffmann M., Schweiger M., Herlich P. Productive T7 infection of Escherichia coli F+ cells and anucleate minicells. Nature. 1977 Sep 29;269(5627):440–442. doi: 10.1038/269440a0. [DOI] [PubMed] [Google Scholar]
  50. Ptashne M., Backman K., Humayun M. Z., Jeffrey A., Maurer R., Meyer B., Sauer R. T. Autoregulation and function of a repressor in bacteriophage lambda. Science. 1976 Oct 8;194(4261):156–161. doi: 10.1126/science.959843. [DOI] [PubMed] [Google Scholar]
  51. Ptashne M. ISOLATION OF THE lambda PHAGE REPRESSOR. Proc Natl Acad Sci U S A. 1967 Feb;57(2):306–313. doi: 10.1073/pnas.57.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ptashne M., Jeffrey A., Johnson A. D., Maurer R., Meyer B. J., Pabo C. O., Roberts T. M., Sauer R. T. How the lambda repressor and cro work. Cell. 1980 Jan;19(1):1–11. doi: 10.1016/0092-8674(80)90383-9. [DOI] [PubMed] [Google Scholar]
  53. Ray P., Murialdo H. The role of gene Nu3 in bacteriophage lambda head morphogenesis. Virology. 1975 Mar;64(1):247–263. doi: 10.1016/0042-6822(75)90096-3. [DOI] [PubMed] [Google Scholar]
  54. Reeve J. N. Bacteriophage infection of minicells: a general method for identification of "in vivo" bacteriophage directed polypeptide biosynthesis. Mol Gen Genet. 1977 Dec 14;158(1):73–79. doi: 10.1007/BF00455121. [DOI] [PubMed] [Google Scholar]
  55. Reeve J. N., Cornett J. B. Bacteriophage SPO1-induced macromolecular synthesis in minicells of Bacillus subtilis. J Virol. 1975 Jun;15(6):1308–1316. doi: 10.1128/jvi.15.6.1308-1316.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Reeve J. N., Mertens G., Amann E. Early development of bacteriophages SP01 and SP82G in minicells of Bacillus subtilis. J Mol Biol. 1978 Apr 5;120(2):183–207. doi: 10.1016/0022-2836(78)90064-5. [DOI] [PubMed] [Google Scholar]
  57. Reeve J. N. Selective expression of transduced or cloned DNA in minicells containing plasmid pKB280. Nature. 1978 Dec 14;276(5689):728–729. doi: 10.1038/276728a0. [DOI] [PubMed] [Google Scholar]
  58. Reeve J. N., Shaw J. E. Lambda encodes an outer membrane protein: the lom gene. Mol Gen Genet. 1979;172(3):243–248. doi: 10.1007/BF00271723. [DOI] [PubMed] [Google Scholar]
  59. Reeve J. N. phi X174-directed DNA and protein syntheses in infected minicells. J Virol. 1981 Nov;40(2):396–402. doi: 10.1128/jvi.40.2.396-402.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Reeve J. Use of minicells for bacteriophage-directed polypeptide synthesis. Methods Enzymol. 1979;68:493–503. doi: 10.1016/0076-6879(79)68038-2. [DOI] [PubMed] [Google Scholar]
  61. Reichardt L. F. Control of bacteriophage lambda repressor synthesis after phage infection: the role of the N, cII, cIII and cro products. J Mol Biol. 1975 Apr 5;93(2):267–288. doi: 10.1016/0022-2836(75)90132-1. [DOI] [PubMed] [Google Scholar]
  62. Rogerson A. C., Stone J. E. Beta-beta' subunits of ribonucleic acid polymerase in episome-free minicells of Escherichia coli. J Bacteriol. 1974 Jul;119(1):332–333. doi: 10.1128/jb.119.1.332-333.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Rosenberg M., Court D., Shimatake H., Brady C., Wulff D. L. The relationship between function and DNA sequence in an intercistronic regulatory region in phage lambda. Nature. 1978 Mar 30;272(5652):414–423. doi: 10.1038/272414a0. [DOI] [PubMed] [Google Scholar]
  64. Rosenvold E. C., Calva E., Burgess R. R., Szybalski W. In vitro transcription from the b2 region of bacteriophage lambda. Virology. 1980 Dec;107(2):476–487. doi: 10.1016/0042-6822(80)90314-1. [DOI] [PubMed] [Google Scholar]
  65. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  66. Salstrom J. S., Szybalski W. Coliphage lambdanutL-: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. J Mol Biol. 1978 Sep 5;124(1):195–221. doi: 10.1016/0022-2836(78)90156-0. [DOI] [PubMed] [Google Scholar]
  67. Schwartz M. On the function of the N cistron in phage lambda. Virology. 1970 Jan;40(1):23–33. doi: 10.1016/0042-6822(70)90375-2. [DOI] [PubMed] [Google Scholar]
  68. Shaw J. E., Jones B. B., Pearson M. L. Identification of the N gene protein of bacteriophage lambda. Proc Natl Acad Sci U S A. 1978 May;75(5):2225–2229. doi: 10.1073/pnas.75.5.2225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Signer E. R., Manly K. F., Brunstetter M. A. Deletion mapping of the c-3-N region of bacteriophage. Virology. 1969 Sep;39(1):137–141. doi: 10.1016/0042-6822(69)90356-0. [DOI] [PubMed] [Google Scholar]
  70. Tilly K., Georgopoulos C. Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo. J Bacteriol. 1982 Mar;149(3):1082–1088. doi: 10.1128/jb.149.3.1082-1088.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Vollenweider H. J., Szybalski W. Electron microscopic mapping of RNA polymerase binding to coliphage lambda DNA. J Mol Biol. 1978 Aug 15;123(3):485–498. doi: 10.1016/0022-2836(78)90092-x. [DOI] [PubMed] [Google Scholar]
  72. Witkiewicz H., Taylor K. The fate of phage lambda DNA in lambda-infected minicells. Biochim Biophys Acta. 1979 Aug 29;564(1):31–36. doi: 10.1016/0005-2787(79)90185-0. [DOI] [PubMed] [Google Scholar]
  73. Wyatt W. M., Inokuchi H. Stability of lambda O and P replication functions. Virology. 1974 Mar;58(1):313–315. doi: 10.1016/0042-6822(74)90168-8. [DOI] [PubMed] [Google Scholar]
  74. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]
  75. Zylicz M., Taylor K. Interactions between phage lambda replication proteins, lambda DNA and minicell membrane. Eur J Biochem. 1981 Jan;113(2):303–309. doi: 10.1111/j.1432-1033.1981.tb05067.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES