Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1987 Dec;61(12):3749–3753. doi: 10.1128/jvi.61.12.3749-3753.1987

Intestinal trypsin can significantly modify antigenic properties of polioviruses: implications for the use of inactivated poliovirus vaccine.

M Roivainen 1, T Hovi 1
PMCID: PMC255988  PMID: 2824812

Abstract

It was recently reported that the intestinal protease trypsin cleaves in vitro the VP1 protein of type 3 poliovirus at antigenic site 1 (J. P. Icenogle, P. D. Minor, M. Ferguson, and J. M. Hogle, J. Virol. 60:297-301, 1986). We found that incubation of purified or crude type 3 poliovirus preparations with specimens of human intestinal fluid brings about a similar change in the virion structure. Sera from children immunized solely with the regular inactivated poliovirus vaccine (IPV) neutralized trypsin-cleaved Sabin 3 virus poorly, if at all, despite moderate levels of antibodies to the corresponding intact virus. Sera containing very high titers of the intact virus also neutralized the trypsin-cleaved virus but at a relatively weaker capacity. Most sera from older persons who may have been exposed to a natural poliovirus infection before the introduction of the poliovirus vaccines as well as sera from children infected with type 3 poliovirus during the recent outbreak in Finland were able to neutralize the trypsin-cleaved type 3 polioviruses. Serum specimens collected 1 month after a single dose of live poliovirus vaccine from children previously immunized with IPV were able to neutralize the trypsin-cleaved virus as well. During natural infection and after live poliovirus vaccine administration polioviruses are exposed to proteolytic enzymes in the gut. Our results may offer an alternative explanation for the relatively weak mucosal immunity obtained with IPV. Improvement of IPV preparations by incorporation of trypsin-treated type 3 polioviruses in the vaccine should be studied.

Full text

PDF
3749

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlsson B., Zaman S., Mellander L., Jalil F., Hanson L. A. Secretory and serum immunoglobulin class-specific antibodies to poliovirus after vaccination. J Infect Dis. 1985 Dec;152(6):1238–1244. doi: 10.1093/infdis/152.6.1238. [DOI] [PubMed] [Google Scholar]
  2. Fricks C. E., Icenogle J. P., Hogle J. M. Trypsin sensitivity of the Sabin strain of type 1 poliovirus: cleavage sites in virions and related particles. J Virol. 1985 Jun;54(3):856–859. doi: 10.1128/jvi.54.3.856-859.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hogle J. M., Chow M., Filman D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985 Sep 27;229(4720):1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
  4. Hovi T., Cantell K., Huovilainen A., Kinnunen E., Kuronen T., Lapinleimu K., Pöyry T., Roivainen M., Salama N., Stenvik M. Outbreak of paralytic poliomyelitis in Finland: widespread circulation of antigenically altered poliovirus type 3 in a vaccinated population. Lancet. 1986 Jun 21;1(8495):1427–1432. doi: 10.1016/s0140-6736(86)91566-7. [DOI] [PubMed] [Google Scholar]
  5. Huovilainen A., Hovi T., Kinnunen L., Takkinen K., Ferguson M., Minor P. Evolution of poliovirus during an outbreak: sequential type 3 poliovirus isolates from several persons show shifts of neutralization determinants. J Gen Virol. 1987 May;68(Pt 5):1373–1378. doi: 10.1099/0022-1317-68-5-1373. [DOI] [PubMed] [Google Scholar]
  6. Icenogle J. P., Minor P. D., Ferguson M., Hogle J. M. Modulation of humoral response to a 12-amino-acid site on the poliovirus virion. J Virol. 1986 Oct;60(1):297–301. doi: 10.1128/jvi.60.1.297-301.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lapinleimu K. Elimination of poliomyelitis in Finland. Rev Infect Dis. 1984 May-Jun;6 (Suppl 2):S457–S460. doi: 10.1093/clinids/6.supplement_2.s457. [DOI] [PubMed] [Google Scholar]
  9. Minor P. D., Ferguson M., Evans D. M., Almond J. W., Icenogle J. P. Antigenic structure of polioviruses of serotypes 1, 2 and 3. J Gen Virol. 1986 Jul;67(Pt 7):1283–1291. doi: 10.1099/0022-1317-67-7-1283. [DOI] [PubMed] [Google Scholar]
  10. Minor P. D., Ferguson M., Phillips A., Magrath D. I., Huovilainen A., Hovi T. Conservation in vivo of protease cleavage sites in antigenic sites of poliovirus. J Gen Virol. 1987 Jul;68(Pt 7):1857–1865. doi: 10.1099/0022-1317-68-7-1857. [DOI] [PubMed] [Google Scholar]
  11. Ukkonen P., Huovilainen A., Hovi T. Detection of poliovirus antigen by enzyme immunoassay. J Clin Microbiol. 1986 Dec;24(6):954–958. doi: 10.1128/jcm.24.6.954-958.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES