Abstract
As more and more infectious agents become targets for immunization programmes, the spectrum of adverse events linked to vaccines has been widening. Although some of these links are tenuous, relatively little is known about the immunopathogenesis of even the best characterized vaccine-associated adverse events (VAAEs). The range of possible use of active immunization is rapidly expanding to include vaccines against infectious diseases that require cellular responses to provide protection (e.g. tuberculosis, herpes viral infections), therapeutic vaccines for chronic infections (e.g. human immunodeficiency virus (HIV) infection, viral hepatitis B and C), and vaccines against non-infectious conditions (e.g. cancer, autoimmune diseases). Less virulent pathogens (e.g. varicella, rotavirus in the developed world) are also beginning to be targeted, and vaccine use is being justified in terms of societal and parental "costs" rather than in straightforward morbidity and mortality costs. In the developed world the paediatric immunization schedule is becoming crowded, with pressure to administer increasing numbers of antigens simultaneously in ever simpler forms (e.g. subcomponent, peptide, and DNA vaccines). This trend, while attractive in many ways, brings hypothetical risks (e.g. genetic restriction, narrowed shield of protection, and loss of randomness), which will need to be evaluated and monitored. The available epidemiological and laboratory tools to address the issues outlined above are somewhat limited. As immunological and genetic tools improve in the years ahead, it is likely that we shall be able to explain the immunopathogenesis of many VAAEs and perhaps even anticipate and avoid some of them. However, this will only happen if the human and financial resources needed for monitoring and studying vaccine safety stay in step with the accelerating pace of vaccine development. Failure to make such a commitment would put all immunization programmes at risk.
Full Text
The Full Text of this article is available as a PDF (250.4 KB).