Abstract
In the past, quality control of vaccines depended on use of a variety of testing methods to ensure that the products were safe and potent. These methods were developed for vaccines whose safety and efficacy were based on several years worth of data. However, as vaccine production technologies have developed, so have the testing technologies. Tests are now able to detect potential hazards with a sensitivity not possible a few years ago, and an increasing array of physicochemical methods allows a much better characterization of the product. In addition to sophisticated tests, vaccine regulation entails a number of other procedures to ensure safety. These include characterization of starting materials by supplier audits, cell banking, seed lot systems, compliance with the principles of good manufacturing practices, independent release of vaccines on a lot-by-lot basis by national regulatory authorities, and enhanced pre- and post-marketing surveillance for possible adverse events following immunization. These procedures help assure vaccine efficacy and safety, and some examples are given in this article. However, some contaminants of vaccines that can be detected by newer assays raise theoretical safety concerns but their presence may be less hazardous than not giving the vaccines. Thus risk-benefit decisions must be well informed and based on scientific evidence.
Full Text
The Full Text of this article is available as a PDF (272.2 KB).