Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1983 Jan;45(1):226–232. doi: 10.1128/jvi.45.1.226-232.1983

Mutant ts1 of bacteriophage PM2 is defective in the major capsid protein and fails to package its DNA.

G J Brewer
PMCID: PMC256405  PMID: 6823014

Abstract

Infection of Alteromonas espejiana at restrictive temperature with mutant ts1 of bacteriophage PM2 resulted in the intracellular accumulation of virus-sized empty-appearing membrane vesicles. The DNA associated with purified vesicles was fully susceptible to digestion with DNase. Sedimentation analysis and electron microscopy suggested a full-length linear form of the normally circular viral genome. A pulse-chase-shift experiment suggested that [3H]thymidine-labeled DNA made under restrictive conditions is assembled into virions after shift to permissive temperature. A defective structural protein in the ts1 virion appears to be the cause of a rapid rate of thermal inactivation of infectivity. Analysis of the proteins of ts1 by isoelectric focusing indicated a more alkaline isoelectric mobility of the major capsid protein, sp27. Six spontaneous revertants of ts1 showed reversion to the wild-type isoelectric form of sp27. These results identify sp27 as the defective gene product of ts1. Taken together, these results suggest that the membrane of PM2 is formed without the aid of an inner core or an outer scaffolding.

Full text

PDF
226

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
  2. Bode H. R., Morowitz H. J. Size and structure of the Mycoplasma hominis H39 chromosome. J Mol Biol. 1967 Jan 28;23(2):191–199. doi: 10.1016/s0022-2836(67)80026-3. [DOI] [PubMed] [Google Scholar]
  3. Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
  4. Brewer G. J. Characterization of temperature-sensitive mutants of bacteriophage PM2: membrane mutants. Mol Gen Genet. 1978 Nov 16;167(1):65–74. doi: 10.1007/BF00270322. [DOI] [PubMed] [Google Scholar]
  5. Brewer G. J. Control of membrane morphogenesis in bacteriophage PM2. J Supramol Struct. 1976;5(1):73–79. doi: 10.1002/jss.400050108. [DOI] [PubMed] [Google Scholar]
  6. Brewer G. J. Control of membrane morphogenesis in bacteriophage. Int Rev Cytol. 1980;68:53–96. doi: 10.1016/s0074-7696(08)62307-4. [DOI] [PubMed] [Google Scholar]
  7. Brewer G. J. In vivo assembly of a biological membrane of defined size, shape, and lipid composition. J Virol. 1979 Jun;30(3):875–882. doi: 10.1128/jvi.30.3.875-882.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brewer G. J. Membrane-localized replication of bacteriophage PM2. Virology. 1978 Jan;84(1):242–245. doi: 10.1016/0042-6822(78)90243-x. [DOI] [PubMed] [Google Scholar]
  9. Brewer G. J., Singh M. Kinetics and characterization of the proteins synthesized during infection by bacteriophage PM2. J Gen Virol. 1982 May;60(Pt 1):135–146. doi: 10.1099/0022-1317-60-1-135. [DOI] [PubMed] [Google Scholar]
  10. Camerini-Otero R. D., Franklin R. M. Structure and synthesis of a lipid-containing bacteriophage. The molecular weight and other physical properties of bacterophage PM2. Eur J Biochem. 1975 May 6;53(2):343–348. doi: 10.1111/j.1432-1033.1975.tb04074.x. [DOI] [PubMed] [Google Scholar]
  11. Espejo R. T., Canelo E. S., Sinsheimer R. L. Replication of bacteriophage PM2 deoxyribonucleic acid: a closed circular double-stranded molecule. J Mol Biol. 1971 Mar 28;56(3):597–621. doi: 10.1016/0022-2836(71)90404-9. [DOI] [PubMed] [Google Scholar]
  12. Hinnen R., Chassin R., Schäfer R., Franklin R. M., Hitz H., Schäfer D. Structure and synthesis of a lipid-containing bacteriophage. Purification, chemical composition, and partial sequences of the structural proteins. Eur J Biochem. 1976 Sep;68(1):139–152. doi: 10.1111/j.1432-1033.1976.tb10772.x. [DOI] [PubMed] [Google Scholar]
  13. Keen J. H., Willingham M. C., Pastan I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell. 1979 Feb;16(2):303–312. doi: 10.1016/0092-8674(79)90007-2. [DOI] [PubMed] [Google Scholar]
  14. Laval F. Endonuclease activity associated with purified PM2 bacteriophages. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4965–4969. doi: 10.1073/pnas.71.12.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murialdo H., Becker A. Assembly of biologically active proheads of bacteriophage lambda in vitro. Proc Natl Acad Sci U S A. 1977 Mar;74(3):906–910. doi: 10.1073/pnas.74.3.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Noel D., Nikaido K., Ames G. F. A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry. 1979 Sep 18;18(19):4159–4165. doi: 10.1021/bi00586a017. [DOI] [PubMed] [Google Scholar]
  17. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  18. Opschoor A., Pouwels P. H., Knijnenburg C. M., Aten J. B. Viscosity and sedimentation of circular native deoxyribonucleic acid. J Mol Biol. 1968 Oct 14;37(1):13–20. doi: 10.1016/0022-2836(68)90070-3. [DOI] [PubMed] [Google Scholar]
  19. Tung J. S., Knight C. A. Effect of charge on the determination of molecular weight of proteins by gel electrophoresis in SDS. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1117–1121. doi: 10.1016/0006-291x(71)90020-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES