Abstract
The addition of low levels (40 ng/ml) of the synthetic double-stranded polyribonucleotide poly I:C to lysates of interferon-treated L-cells resulted in a strong inhibition (70 to 75%) of the in vitro translation of mengovirus RNA. Under these conditions, the rates of incorporation of [35S]methionine or formyl-[35S]methionine were depressed to a comparable extent. The sequences of mengovirus RNA recognized by ribosomes of interferon-treated cells at initiation of translation were compared with those present in initiation complexes formed by ribosomes of untreated controls. Fingerprint analysis revealed that the same sequences of mengovirus RNA were protected against nuclease attack by the 80S and the 40S initiation complexes formed in vitro in lysates of control or interferon-treated L-cells. Mengovirus RNA-coded proteins were labeled at their N-terminal end with formyl-[35S]methionine and digested to completion with trypsin. The resulting fragments were separated by high-voltage paper electrophoresis. Two different formyl-[35S]methionine-labeled N termini were resolved. Further analyses supported the notion that the two radioactive peaks originated in the initiation of translation at two different sites. This pattern did not change when mengovirus RNA was translated in lysates of interferon-treated cells.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baglioni C. Interferon-induced enzymatic activities and their role in the antriviral state. Cell. 1979 Jun;17(2):255–264. doi: 10.1016/0092-8674(79)90151-x. [DOI] [PubMed] [Google Scholar]
- Celma M. L., Ehrenfeld E. Translation of poliovirus RNA in vitro: detection of two different initiation sites. J Mol Biol. 1975 Nov 15;98(4):761–780. doi: 10.1016/s0022-2836(75)80009-x. [DOI] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Darnbrough C., Legon S., Hunt T., Jackson R. J. Initiation of protein synthesis: evidence for messenger RNA-independent binding of methionyl-transfer RNA to the 40 S ribosomal subunit. J Mol Biol. 1973 May 25;76(3):379–403. doi: 10.1016/0022-2836(73)90511-1. [DOI] [PubMed] [Google Scholar]
- Hunter A. R., Jackson R. J. The origin and nature of the methionine residue initiating the synthesis of haemoglobin in vivo and in vitro. Eur J Biochem. 1971 Apr;19(3):316–322. doi: 10.1111/j.1432-1033.1971.tb01321.x. [DOI] [PubMed] [Google Scholar]
- Kaempfer R., van Emmelo J., Fiers W. Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5'-terminal sequence comprising the ribosome binding site. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1542–1546. doi: 10.1073/pnas.78.3.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawakita M., Cabrer B., Taira H., Rebello M., Slattery E., Weideli H., Lengyel P. Purification of interferon from mouse Ehrlich ascites tumor cells. J Biol Chem. 1978 Jan 25;253(2):598–602. [PubMed] [Google Scholar]
- Lewis J. A., Falcoff E., Falcoff R. Dual action of double-stranded RNA inhibiting protein synthesis in extracts of interferon-treated mouse L cells. Translation is impaired at the level of initiation and by mRNA degradation. Eur J Biochem. 1978 May 16;86(2):497–509. doi: 10.1111/j.1432-1033.1978.tb12333.x. [DOI] [PubMed] [Google Scholar]
- Ochoa S., de Haro C. Regulation of protein synthesis in eukaryotes. Annu Rev Biochem. 1979;48:549–580. doi: 10.1146/annurev.bi.48.070179.003001. [DOI] [PubMed] [Google Scholar]
- Perez Bercoff R., Gander M. In vitro translation of mengovirus RNA deprived of the terminally-linked (capping?) protein. FEBS Lett. 1978 Dec 15;96(2):306–312. doi: 10.1016/0014-5793(78)80424-4. [DOI] [PubMed] [Google Scholar]
- Perez-Bercoff R., Gander M., Preisig E. The genomic RNA of mengovirus. II: Comparative analysis of the standard and denser virions. Virology. 1978 Apr;85(2):378–386. doi: 10.1016/0042-6822(78)90446-4. [DOI] [PubMed] [Google Scholar]
- Perez-Bercoff R., Kaempfer R. Genomic RNA of mengovirus V. Recognition of common features by ribosomes and eucaryotic initiation factor 2. J Virol. 1982 Jan;41(1):30–41. doi: 10.1128/jvi.41.1.30-41.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pérez-Bercoff R., Billeter M. A. Characterization of the 3'-terminal region of the large molecular weight RNA subunits from normal and transformation-defective Rous sarcoma virus. Biochim Biophys Acta. 1976 Dec 1;454(2):383–388. doi: 10.1016/0005-2787(76)90240-9. [DOI] [PubMed] [Google Scholar]
- Ralston R. O., Das A., Grace M., Das H., Gupta N. K. Protein synthesis in rabbit reticulocytes: characteristics of a postribosomal supernatant factor that reverses inhibition of protein synthesis in heme-deficient lysates and inhibition of ternary complex (Met-tRNAfMet.eIF-2.GTP) formation by heme-regulated inhibitor. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5490–5494. doi: 10.1073/pnas.76.11.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranu R. S. Regulation of protein synthesis in rabbit reticulocyte lysates: the hemeregulated protein kinase (HRI) and double stranded RNA induced protein kinase (dRI) phosphorylate the same site(s) on initiation factor eIF-2. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1437–1444. doi: 10.1016/0006-291x(79)91227-0. [DOI] [PubMed] [Google Scholar]
- Samuel C. E. Mechanism of interferon action: phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci U S A. 1979 Feb;76(2):600–604. doi: 10.1073/pnas.76.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatkin A. J. Capping of eucaryotic mRNAs. Cell. 1976 Dec;9(4 Pt 2):645–653. doi: 10.1016/0092-8674(76)90128-8. [DOI] [PubMed] [Google Scholar]
- Stanley W. M., Jr Specific aminoacylation of the methionine-specific tRNA's of eukaryotes. Methods Enzymol. 1974;29:530–547. doi: 10.1016/0076-6879(74)29049-9. [DOI] [PubMed] [Google Scholar]