Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1983 Jun;46(3):778–787. doi: 10.1128/jvi.46.3.778-787.1983

Interaction of a DNA-binding protein, the product of gene D5 of bacteriophage T5, with double-stranded DNA: effects on T5 DNA polymerase functions in vitro.

R K Fujimura, B C Roop
PMCID: PMC256554  PMID: 6304341

Abstract

The gene D5 product (gpD5) of bacteriophage T5 is a DNA-binding protein that binds preferentially to double-stranded DNA and is essential for T5 DNA replication, yet it inhibits DNA synthesis in vitro. Mechanisms of inhibition were studied by using nicked DNA and primed single-stranded DNA as a primer-template. Inhibition of T5 DNA polymerase activity by gpD5 occurred when double-stranded regions of DNA were saturated with gpD5. The 3' leads to 5' exonuclease associated with T5 DNA polymerase was not very active with nicked DNA, but inhibition of hydrolysis of substituents at 3'-hydroxyl termini by gpD5 could be observed. T5 DNA polymerase appears to be capable of binding to the 3' termini even when double-stranded regions are saturated with gpD5. The interaction of gpD5 with the polymerases at the primer terminus is apparently the primary cause of inhibition of polymerization.

Full text

PDF
778

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  2. Chinnadurai G., McCorquodale D. J. Dual role of gene D5 in the development of bacteriophage T5. Nature. 1974 Feb 22;247(5442):554–556. doi: 10.1038/247554a0. [DOI] [PubMed] [Google Scholar]
  3. Das S. K., Fujimura R. K. Exonuclease associated with bacteriophage T5-Induced DNA polymerase. J Virol. 1976 Oct;20(1):70–77. doi: 10.1128/jvi.20.1.70-77.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Das S. K., Fujimura R. K. Mechanism of T5-induced DNA polymerase. I. Replication of short primer templates. J Biol Chem. 1977 Dec 10;252(23):8700–8707. [PubMed] [Google Scholar]
  5. Das S. K., Fujimura R. K. Mechanism of primer-template-dependent conversion of dNTP leads to dNMP by T5 DNA polymerase. J Biol Chem. 1980 Aug 10;255(15):7149–7154. [PubMed] [Google Scholar]
  6. Das S. K. Primer-mediated inhibition of the hydrolysis of template DNA by T5-induced DNA polymerase. Biochem Biophys Res Commun. 1977 Nov 7;79(1):247–253. doi: 10.1016/0006-291x(77)90087-0. [DOI] [PubMed] [Google Scholar]
  7. Ficht T. A., Moyer R. W. Isolation and characterization of a putative bacteriophage T5 transcription.replication enzyme complex from infected Escherichia coli. J Biol Chem. 1980 Jul 25;255(14):7040–7048. [PubMed] [Google Scholar]
  8. Fujimura R. K., Das S. K. Replicative DNA polymerases and mechanisms at a replication fork. Prog Nucleic Acid Res Mol Biol. 1980;24:87–107. doi: 10.1016/s0079-6603(08)60672-8. [DOI] [PubMed] [Google Scholar]
  9. Fujimura R. K., Roop B. C. Characterization of DNA polymerase induced by bacteriophage T5 with DNA containing single strand breaks. J Biol Chem. 1976 Apr 10;251(7):2168–2174. [PubMed] [Google Scholar]
  10. Fujimura R. K., Roop B. C. Interaction of a DNA-binding protein, the gene product of D5 of bacteriophage T5, with double-stranded DNA. Analysis by metrizamide gradient centrifugation. J Biol Chem. 1982 Dec 25;257(24):14811–14816. [PubMed] [Google Scholar]
  11. Fujimura R. K., Roop B. C. Interaction of a DNA-binding protein, the gene product of D5 of bacteriophage T5, with double-stranded DNA. Analysis by metrizamide gradient centrifugation. J Biol Chem. 1982 Dec 25;257(24):14811–14816. [PubMed] [Google Scholar]
  12. Fujimura R. K., Volkin E. Biochemical analysis of the naturally repaired sections of bacteriophage T5 deoxyribonucleic acid. I. Bromodeoxyuridine incorporation into parental deoxyribonucleic acid in the absence of deoxyribonucleic acid replication. Biochemistry. 1968 Oct;7(10):3488–3498. doi: 10.1021/bi00850a025. [DOI] [PubMed] [Google Scholar]
  13. Hayward G. S., Smith M. G. The chromosome of bacteriophage T5. I. Analysis of the single-stranded DNA fragments by agarose gel electrophoresis. J Mol Biol. 1972 Feb 14;63(3):383–395. doi: 10.1016/0022-2836(72)90435-4. [DOI] [PubMed] [Google Scholar]
  14. Laskey R. A., Harland R. M. Replication origins in the eucaryotic chromosome. Cell. 1981 May;24(2):283–284. doi: 10.1016/0092-8674(81)90316-0. [DOI] [PubMed] [Google Scholar]
  15. Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCorquodale D. J., Gossling J., Benzinger R., Chesney R., Lawhorne L., Moyer R. W. Gene D5 product of bacteriophage T5: DNA-binding protein affecting DNA replication and late gene expression. J Virol. 1979 Jan;29(1):322–327. doi: 10.1128/jvi.29.1.322-327.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McDonell M. W., Simon M. N., Studier F. W. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol. 1977 Feb 15;110(1):119–146. doi: 10.1016/s0022-2836(77)80102-2. [DOI] [PubMed] [Google Scholar]
  18. Ptashne M., Jeffrey A., Johnson A. D., Maurer R., Meyer B. J., Pabo C. O., Roberts T. M., Sauer R. T. How the lambda repressor and cro work. Cell. 1980 Jan;19(1):1–11. doi: 10.1016/0092-8674(80)90383-9. [DOI] [PubMed] [Google Scholar]
  19. Rice A. C., Ficht T. A., Holladay L. A., Moyer R. W. The purification and properties of a double-stranded DNA-binding protein encoded by the gene D5 of bacteriophage T5. J Biol Chem. 1979 Aug 25;254(16):8042–8051. [PubMed] [Google Scholar]
  20. Rogers S. G., Godwin E. A., Shinosky E. S., Rhoades M. Interruption-deficient mutants of bacteriophage T5 I. Isolation and general properties. J Virol. 1979 Feb;29(2):716–725. doi: 10.1128/jvi.29.2.716-725.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scheller A., Covey L., Barnet B., Prives C. A small subclass of SV40 T antigen binds to the viral origin of replication. Cell. 1982 Jun;29(2):375–383. doi: 10.1016/0092-8674(82)90154-4. [DOI] [PubMed] [Google Scholar]
  22. Tomizawa J., Selzer G. Initiation of DNA synthesis in Escherichia coli. Annu Rev Biochem. 1979;48:999–1034. doi: 10.1146/annurev.bi.48.070179.005031. [DOI] [PubMed] [Google Scholar]
  23. Tsurimoto T., Matsubara K. Purified bacteriophage lambda O protein binds to four repeating sequences at the lambda replication origin. Nucleic Acids Res. 1981 Apr 24;9(8):1789–1799. doi: 10.1093/nar/9.8.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES