Abstract
We have analyzed the structure of rubella virus proteins labeled metabolically with [35S]methionine, [3H]mannose, and [3H]glucosamine or externally with [3H]borohydride after galactose oxidase treatment. Four structural proteins, with MrS of about 58,000 (E1), 47,000 (E2a), 42,000 (E2b), and 33,000 (C), were resolved on sodium dodecyl sulfate-polyacrylamide gels. Tryptic peptide maps obtained from [35S]methionine-labeled proteins indicated that E1 and C were unrelated to each other and to E2a and E2b, whereas the latter two gave similar, if not identical, maps. E1, E2a, and E2b were associated with the envelope and were located externally on the virus particle, whereas the C protein was associated with the RNA in the nucleocapsid. Solubilization of the virus with Triton X-100, followed by removal of the nucleocapsid and the detergent, resulted in the formation of soluble envelope protein complexes (rosettes) containing E1, E2a, and E2b. Although external labeling with [3H]borohydride and metabolic labeling with [3H]glucosamine suggested that all three proteins were glycosylated, only E1 and E2b were efficiently labeled with [3H]mannose. It is thus possible that the difference in migration between E2a and E2b is due to differences in glycosylation. Analysis by immunoprecipitation and sodium dodecyl sulfate-gel electrophoresis of intracellular [35S]methionine-labeled structural proteins synthesized in the presence and absence of tunicamycin supported the conclusion that E1 and E2 are glycoproteins. Unglycosylated E1 and E2 had an Mr of about 53,000 and 30,000, respectively.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allington W. B., Cordry A. L., McCullough G. A., Mitchell D. E., Nelson J. W. Electrophoretic concentration of macromolecules. Anal Biochem. 1978 Mar;85(1):188–196. doi: 10.1016/0003-2697(78)90289-0. [DOI] [PubMed] [Google Scholar]
- Bardeletti G., Kessler N., Aymard-Henry M. Morphology, biochemical analysis and neuraminidase activity of rubella virus. Arch Virol. 1975;49(2-3):175–186. doi: 10.1007/BF01317536. [DOI] [PubMed] [Google Scholar]
- Beemon K., Hunter T. Characterization of Rous sarcoma virus src gene products synthesized in vitro. J Virol. 1978 Nov;28(2):551–566. doi: 10.1128/jvi.28.2.551-566.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Browne C. A., Bennett H. P., Solomon S. The isolation of peptides by high-performance liquid chromatography using predicted elution positions. Anal Biochem. 1982 Jul 15;124(1):201–208. doi: 10.1016/0003-2697(82)90238-x. [DOI] [PubMed] [Google Scholar]
- Gahmberg C. G., Hakomori S. I. External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes. J Biol Chem. 1973 Jun 25;248(12):4311–4317. [PubMed] [Google Scholar]
- Garoff H., Söderlund H. The amphiphilic membrane glycoproteins of Semliki Forest virus are attached to the lipid bilayer by their COOH-terminal ends. J Mol Biol. 1978 Sep 25;124(3):535–549. doi: 10.1016/0022-2836(78)90186-9. [DOI] [PubMed] [Google Scholar]
- Helenius A., von Bonsdorff C. H. Semlike Forest virus membrane proteins. Preparation and characterization of spike complexes soluble in detergent-free medium. Biochim Biophys Acta. 1976 Jul 15;436(4):895–899. doi: 10.1016/0005-2736(76)90421-1. [DOI] [PubMed] [Google Scholar]
- Ho-Terry L., Cohen A. Degradation of rubella virus envelope components. Arch Virol. 1980;65(1):1–13. doi: 10.1007/BF01340535. [DOI] [PubMed] [Google Scholar]
- Ho-Terry L., Cohen A. Rubella virion polypeptides: characterization by polyacrylamide gel electrophoresis, isoelectric focusing and peptide mapping. Arch Virol. 1982;72(1-2):47–54. doi: 10.1007/BF01314449. [DOI] [PubMed] [Google Scholar]
- Kuismanen E., Hedman K., Saraste J., Pettersson R. F. Uukuniemi virus maturation: accumulation of virus particles and viral antigens in the Golgi complex. Mol Cell Biol. 1982 Nov;2(11):1444–1458. doi: 10.1128/mcb.2.11.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Käriäinen L., Söderlund H. Structure and replication of alpha-viruses. Curr Top Microbiol Immunol. 1978;82:15–69. doi: 10.1007/978-3-642-46388-4_2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laver W. G., Valentine R. C. Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 1969 May;38(1):105–119. doi: 10.1016/0042-6822(69)90132-9. [DOI] [PubMed] [Google Scholar]
- Liebhaber H., Gross P. A. The structural proteins of rubella virus. Virology. 1972 Mar;47(3):684–693. doi: 10.1016/0042-6822(72)90558-2. [DOI] [PubMed] [Google Scholar]
- Luukkonen A., Gahmberg C. G., Renkonen O. Surface labeling of Semliki forest virus glycoproteins using galactose oxidase. Exposure of E3-glycoprotein. Virology. 1977 Jan;76(1):55–59. doi: 10.1016/0042-6822(77)90281-1. [DOI] [PubMed] [Google Scholar]
- MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
- Payment P., Ajdukovic D., Pavilanis V. Le virus de la rubéole. I. Morphologie et protéines structurales. Can J Microbiol. 1975 May;21(5):703–709. [PubMed] [Google Scholar]
- Persson H., Pettersson U., Mathews M. B. Synthesis of a structural adenovirus polypeptide in the absence of viral DNA replication. Virology. 1978 Oct 1;90(1):67–79. doi: 10.1016/0042-6822(78)90334-3. [DOI] [PubMed] [Google Scholar]
- Pesonen M., Kuismanen E., Pettersson R. F. Monosaccharide sequence of protein-bound glycans of Uukuniemi virus. J Virol. 1982 Feb;41(2):390–400. doi: 10.1128/jvi.41.2.390-400.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettersson R., Käriäinen L. The ribonucleic acids of Uukuniemi virus, a noncubical tick-borne arbovirus. Virology. 1973 Dec;56(2):608–619. doi: 10.1016/0042-6822(73)90062-7. [DOI] [PubMed] [Google Scholar]
- Pettersson R., Käriäinen L., von Bonsdorff C. H., Oker-Blom N. Structural components of Uukuniemi virus, a noncubical tick-borne arbovirus. Virology. 1971 Dec;46(3):721–729. doi: 10.1016/0042-6822(71)90074-2. [DOI] [PubMed] [Google Scholar]
- Porterfield J. S., Casals J., Chumakov M. P., Gaidamovich S. Y., Hannoun C., Holmes I. H., Horzinek M. C., Mussgay M., Oker-Blom N., Russell P. K. Togaviridae. Intervirology. 1978;9(3):129–148. doi: 10.1159/000148930. [DOI] [PubMed] [Google Scholar]
- Simons K., Helenius A., Leonard K., Sarvas M., Gething M. J. Formation of protein micelles from amphiphilic membrane proteins. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5306–5310. doi: 10.1073/pnas.75.11.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skelly J., Howard C. R., Zuckerman A. J. Hepatitis B polypeptide vaccine preparation in micelle form. Nature. 1981 Mar 5;290(5801):51–54. doi: 10.1038/290051a0. [DOI] [PubMed] [Google Scholar]
- Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
- Tartakoff A. M., Vassalli P. Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the golgi complex. J Exp Med. 1977 Nov 1;146(5):1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tkacz J. S., Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun. 1975 Jul 8;65(1):248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trudel M., Nadon F., Comtois R., Payment P., Bonneau A. M., Lecomte J. Identification of rubella virus structural proteins by immunoprecipitation. J Virol Methods. 1982 Nov;5(3-4):191–197. doi: 10.1016/0166-0934(82)90009-x. [DOI] [PubMed] [Google Scholar]
- Trudel M., Nadon F. Virosome preparation: differences between influenza and rubella hemagglutinin adsorption. Can J Microbiol. 1981 Sep;27(9):958–962. doi: 10.1139/m81-151. [DOI] [PubMed] [Google Scholar]
- Vaheri A., Hovi T. Structural proteins and subunits of rubella virus. J Virol. 1972 Jan;9(1):10–16. doi: 10.1128/jvi.9.1.10-16.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaheri A., von Bonsdorff C. H., Vesikari T., Hovi T., Vänänen P. Purification of rubella virus particles. J Gen Virol. 1969 Jul;5(1):39–46. doi: 10.1099/0022-1317-5-1-39. [DOI] [PubMed] [Google Scholar]
- Van Alstyne D., Krystal G., Kettyls G. D., Bohn E. M. The purification of rubella virus (RV) and determination of its polypeptide composition. Virology. 1981 Jan 30;108(2):491–498. doi: 10.1016/0042-6822(81)90456-6. [DOI] [PubMed] [Google Scholar]