Abstract
Local anesthetics are able to induce pain relief by binding to the sodium channels of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Ropivacaine (RVC) is an amino amide, enantiomerically pure, local anesthetic largely used in surgical procedures, which present physico-chemical and therapeutic properties similar to those of bupivacaine but decreased toxicity and motor blockade. The present work focuses on the preparation and characterization of nanospheres containing RVC; 0.25% and 0.50% RVC were incorporated in poly(d,l-lactide-co-glycolide (PLGA) 50:50) nanospheres (PLGA-NS), prepared by the nanoprecipitation method. Characterization of the nanospheres was conducted through the measurement of pH, particle size, and zeta potential. The pH of the nanoparticle system with RVC was 6.58. The average diameters of the RVC-containing nanospheres was 162.7 ± 1.5 nm, and their zeta potentials were negative, with values of about −10.81 ± 1.16 mV, which promoted good stabilization of the particles in solution. The cytotoxicity experiments show that RVC-loaded PLGA-NS generate a less toxic formulation as compared with plain RVC. Since this polymer drug-delivery system can effectively generate an even less toxic RVC formulation, this study is fundamental due to its characterization of a potentially novel pharmaceutical form for the treatment of pain with RVC.
Keywords: Ropivacaine, Nanospheres, PLGA, Drug delivery
References
- 1.Hille, B.: Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor interaction. J. Gen. Physiol. 69, 497–575 (1997). doi:10.1085/jgp.69.4.497 [DOI] [PMC free article] [PubMed]
- 2.Cederholm, I.: Preliminary risk-benefit analisys of ropivacaine in labour and following surgery. Drug Safety 16, 391–402 (1997) [DOI] [PubMed]
- 3.Knudsen, J., Suurküla, M.B., Bolmberg, S., Sjövall, J., Edvardsson, N.: Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br. J. Anaesth. 78, 507–514 (1997) [DOI] [PubMed]
- 4.Dony, P., Dewinde, V., Vanderick, B., Cuignet, O., Gautier, P., Legrand, E., Lavand’homme, P., De Kock, M.: The comparative toxicicty of ropivacaine and bupivacaine at equipotent doses in rats. Anesth. Analg. 91, 1489–1492 (2000). doi:10.1097/00000539-200012000-00036 [DOI] [PubMed]
- 5.Wang, R.D., Dangler, L.A., Greengrass, R.A.: Update on ropivacaine. Expert Opin. Pharmacother. 2, 2051–2063 (2001). doi:10.1517/14656566.2.12.2051 [DOI] [PubMed]
- 6.Mather, L., Chang, D.H.T.: Cardiotoxicity with modern local anesthetics: is there a safer choice? Drugs 61, 333–342 (2001). doi:10.2165/00003495-200161030-00002 [DOI] [PubMed]
- 7.McClellan, K., Faulds, D.: Ropivacaine: an update of its use in regional anesthesia. Drugs 60, 1065–1093 (2001). doi:10.2165/00003495-200060050-00007 [DOI] [PubMed]
- 8.Cruz, L., Soares, L.U., Costa, T.D., Mezzalira, G., Silveira, N.P., Guterres, S.S., Pohlmann, A.R.: Diffusion and mathematical modeling of release profiles from nanocarriers. Int. J. Pharm. 313, 198–205 (2006). doi:10.1016/j.ijpharm.2006.01.035 [DOI] [PubMed]
- 9.Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Dudziski, W.E.: Biodegradable polymerica nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001). doi:10.1016/S0168-3659(00)00339-4 [DOI] [PubMed]
- 10.Talja, M., Valimaa, T., Tamela, T., Petas, A., Tormala, P.: Bioabsorbable and biodegradable stents in urology. J. Endourol. 11, 391–397 (1997) [DOI] [PubMed]
- 11.Athanasiou, K.A., Niederauer, G.G., Agrawal, C.M.: Sterilzation, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996). doi:10.1016/0142-9612(96)85754-1 [DOI] [PubMed]
- 12.Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N., Benita, S.: Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55, 1–4 (1989). doi:10.1016/0378-5173(89)90281-0 [DOI]
- 13.Avgoustakis, K., Beletsi, A., Panagi, Z., Kleptsanis, P., Livaniou, E., Evangelatos, G., Ithakissios, D.S.: Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles. Int. J. Pharm. 259, 115–127 (2003). doi:10.1016/S0378-5173(03)00224-2 [DOI] [PubMed]
- 14.Michalowski, C.B., Guterres, S.S., Dalla Costa, T.: Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J. Pharm. Biomed. Anal. 35, 1093–1100 (2004). doi:10.1016/j.jpba.2004.04.002 [DOI] [PubMed]
- 15.Mallin, M., Vainio, H., Karjalainem, K., Seppala, J.: Biodegradable lactone copolymers. II. Hydrolytics study of caprolactone and lactide copolymers. J. Appl. Polym. Sci. 59, 1289–1298 (1996). doi:10.1002/(SICI)1097-4628(19960222)59:8<1289::AID-APP12>3.0.CO;2-1 [DOI]
- 16.Pohlmann, A.R., Weiss, V., Mertins, O., Silveira, N.P., Guterres, S.S.: Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. Eur. J. Pharm. Sci. 16, 305–312 (2002). doi:10.1016/S0928-0987(02)00127-6 [DOI] [PubMed]
- 17.Muller, C.R., Haas, S.E., Bassani, V.L., Guterres, S.S., Fessi, H., Peralba, M.C.R., et al: Degradação e estabilização do diclofenaco em nanocápsulas poliméricas. Quim. Nova 27, 555–560 (2004). doi:10.1590/S0100-40422004000400008
- 18.Govender, T., Riley, T., Ehtezazi, T., Garnett, M.C., Solnik, S., Illum, L., Davis, S.S.: Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm. 199, 95–110 (2000). doi:10.1016/S0378-5173(00)00375-6 [DOI] [PubMed]