Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2008 Apr 25;33(5-6):399–419. doi: 10.1007/s10867-008-9058-3

Analytical Ultracentrifugation Sedimentation Velocity for the Characterization of Detergent-Solubilized Membrane Proteins Ca++-ATPase and ExbB

Andrés G Salvay 1,2,3,4,5, Monica Santamaria 6,10, Marc le Maire 7,8,9, Christine Ebel 1,2,3,
PMCID: PMC2565766  PMID: 19669527

Abstract

We have investigated the potential of new methods of analysis of sedimentation velocity (SV) analytical ultracentrifugation (AUC) for the characterization of detergent-solubilized membrane proteins. We analyze the membrane proteins Ca++-ATPase and ExbB solubilized with DDM (dodecyl-β-d-maltoside). SV is extremely well suited for characterizing sample heterogeneity. DDM micelles (s20w = 3.1 S) and complexes (Ca++-ATPase: s20w = 7.3 S; ExbB: s20w = 4 S) are easily distinguished. Using different detergent and protein concentrations, SV does not detect any evidence of self-association for the two proteins. An estimate of bound detergent of 0.9 g/g for Ca++-ATPase and 1.5 g/g for ExbB is obtained from the combined analysis of SV profiles obtained using absorbance and interference optics. Combining s20w with values of the hydrodynamic radius, Rs = 5.5 nm for Ca++-ATPase or Rs = 3.4 nm for ExbB, allows the determination of buoyant molar masses, Mb. In view of their Mb and composition, Ca++-ATPase and ExbB are monomers in our experimental conditions. We conclude that one of the main advantages of SV versus other techniques is the possibility to ascertain the homogeneity of the samples and to focus on a given complex even in the presence of other impurities or aggregates. The relative rapidity of SV measurements also allows experiments on unstable samples.

Keywords: Analytical ultracentrifugation, Membrane proteins, Ca++-ATPase, ExbB

References

  • 1.Gohon, Y., Pavlov, G., Timmins, P., Tribet, C., Popot, J.-L., Ebel, C.: Partial specific volume and solvent interactions of amphipol A8-35. Anal. Biochem. 334(2), 318–334 (2004) [DOI] [PubMed]
  • 2.Lebaupain, F., Salvay, A.G., Olivier, B., Durand, G., Fabiano, A.-S., Michel, N., Popot, J.-L., Ebel, C., Breyton, C., Pucci, B.: Lactobionamide surfactants with hydrogenated, perfluorinated or hemifluorinated tails: physical–chemical and biochemical characterization. Langmuir 22(21), 8881–8890 (2006) [DOI] [PubMed]
  • 3.Musatov, A., Robinson, N.C.: Cholate-induced dimerization of detergent—or phospholipid—solubilized bovine cytochrome C oxidase. Biochemistry 41(13), 4371–4376 (2002) [DOI] [PubMed]
  • 4.Josse, D., Ebel, C., Stroebel, D., Fontaine, A., Borges, F., Echalier, A., Baud, D., Renault, F., le Maire, M., Chabrieres, E. Masson, P.: Oligomeric states of the detergent-solubilized human serum paraoxonase (PON1). J. Biol. Chem. 277, 33386–33397 (2002) [DOI] [PubMed]
  • 5.Fleming, K.G.: Standardizing the free energy change of transmembrane helix–helix interactions. J. Mol. Biol. 323, 563–571 (2002) [DOI] [PubMed]
  • 6.Fisher, L.E., Engelman, D.M., Sturgis, J.N.: Effect of detergents on the association of the glycophorin A transmembrane helix. Biophys. J. 85, 3097–3105 (2003) [DOI] [PMC free article] [PubMed]
  • 7.le Maire, M., Champeil, P., Møller, J.V.: Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta Reviews on Biomembranes 1508, 86–111 (2000) [DOI] [PubMed]
  • 8.Breyton, C., Tribet, C., Olive, J., Dubacq, J.-P., Popot, J.-L.: Dimer to monomer conversion of the cytochrome b6 f complex. Causes and consequences. J. Biol. Chem. 272, 21892–21900 (1997) [DOI] [PubMed]
  • 9.Ebel, C.: Analytical Ultracentrifugation for the study of biological macromolecules. Progr. Colloid Polym. Sci. 127, 73–82 (2004)
  • 10.Ebel, C.: Analytical ultracentrifugation: State of the art and perspectives. In: Uversky, V., Permyakov, E.A. (eds.) Protein Structures: Methods in Protein Structure and Stability Analysis. Nova Science Publishers, New York (2007)
  • 11.Ebel, C., Møller, J.V., le Maire, M.: Analytical ultracentrifugation: membrane protein assemblies in the presence of detergent. In: Pebay-Peyroula, E. (ed.) Biophysical approaches of structure and functions of membrane proteins. Wiley (2007)
  • 12.Schuck, P.: Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modelling. Biophys. J. 78, 1606–1619 (2000) [DOI] [PMC free article] [PubMed]
  • 13.Dam, J., Schuck, P.: Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol. 384, 185–212 (2004) [DOI] [PubMed]
  • 14.Balbo, A., Minor, K.H., Velikovsky, C.A., Mariuzza, R.A., Peterson, C.B., Schuck, P.: Studying multi-protein complexes by multi-signal sedimentation velocity analytical ultracentrifugation. PNAS 102, 81–86 (2005) [DOI] [PMC free article] [PubMed]
  • 15.Lund, S., Orlowski, S., de Foresta, B., Champeil, P., le Maire, M., Møller, J.V.: Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J. Biol. Chem. 264, 4907–4915 (1989) [PubMed]
  • 16.Møller, J.V., le Maire, M.: Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J. Biol. Chem. 268(25), 18659–18672 (1993) [PubMed]
  • 17.Møller, J.V., Juul, B., le Maire, M.: Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996) [DOI] [PubMed]
  • 18.Toyoshima, C., Inesi, G.: Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 73, 269–92 (2004) [DOI] [PubMed]
  • 19.Møller, J.V., Nissen, P., Sørensen, T. L.-M., le Maire, M.: Transport mechanism of the sarcoplasmic reticulum Ca2+-ATPase pump. Curr. Opin. Struct. Biol. 15, 387–393 (2005) [DOI] [PubMed]
  • 20.Postle, K., Kadner, R.J.: Touch and go: tying TonB to transport. Mol. Microbiol. 49(4), 869–882 (2003) [DOI] [PubMed]
  • 21.Higgs, P.I., Larsen, R.A., Postle, K.: Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA. Mol. Microbiol. 44(1), 271–281 (2002) [DOI] [PubMed]
  • 22.Held, K.G., Postle, K.: ExbB and ExbD do not function independently in TonB-dependent energy transduction. J. Bacteriol. 184, 5170–5173 (2002) [DOI] [PMC free article] [PubMed]
  • 23.Salvay, A.G., Ebel, C.: Analytical ultracentrifuge for the characterization of detergent in solution. Progr. Colloid Polym. Sci. 131, 74–82 (2006) [DOI]
  • 24.Hayashi, Y., Matsui, H., Takagi, T.: Membrane protein molecular weight determined by low-angle laser light-scattering photometry coupled with high-performance gel chromatography. Methods Enzymol. 172, 514–525 (1989) [DOI] [PubMed]
  • 25.Yernool, D., Boudker, O., Folta-Stogniew, E., Gouaux, E.: Trimeric subunit stoichiometry of the Glutamate Transporters from Bacillus caldotenax and bacillus stearothermophilus. Biochemistry 42, 12981–12988 (2003) [DOI] [PubMed]
  • 26.Masson, P., Balny, C.: Linear and non-linear pressure dependence of enzyme catalytic parameters. Biochim. Biophys. Acta 1724, 440–450 (2005) [DOI] [PubMed]
  • 27.Osugi, J., Sato, M., Ifuki, N.: Micelle formation of cationic detergent solution at high pressures. The Review of Physical Chemistry of Japan 35(1), 32–37 (1965)
  • 28.Champeil, P., Menguy, T., Tribet, C., Popot, J.-L., le Maire, M.: Interaction of amphipols with sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275(25), 18623–18637 (2000) [DOI] [PubMed]
  • 29.le Maire, M., Møller, J.V., Menguy, T., Velours, J., Champeil, P.: Protein–protein contacts in solubilized membrane proteins, as detected by cross-linking. Anal. Biochem. 362, 168–171 (2007) [DOI] [PubMed]
  • 30.Heegaard, C.W., le Maire, M., Gulik-Krzywicki, T., Møller, J.V.: Monomeric state and Ca2+-ATPase, reconstituted with an excess of phospholipid. J. Biol. Chem. 265, 12020–12028 (1990) [PubMed]
  • 31.Chabre, M., le Maire, M.: Monomeric G-protein-coupled-receptor as a functional unit. Biochemistry 44, 9395–9403 (2005) [DOI] [PubMed]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES