Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1981 Oct;40(1):211–223. doi: 10.1128/jvi.40.1.211-223.1981

den V gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities.

S McMillan, H J Edenberg, E H Radany, R C Friedberg, E C Friedberg
PMCID: PMC256611  PMID: 6270375

Abstract

Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.

Full text

PDF
211

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOLLUM F. J., GROENIGER E., YONEDA M. POLYDEOXYADENYLIC ACID. Proc Natl Acad Sci U S A. 1964 May;51:853–859. doi: 10.1073/pnas.51.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Demple B., Linn S. DNA N-glycosylases and UV repair. Nature. 1980 Sep 18;287(5779):203–208. doi: 10.1038/287203a0. [DOI] [PubMed] [Google Scholar]
  4. Friedberg E. C., Clayton D. A. Electron microscopic studies on substrate specificity of T4 excision repair endonuclease. Nature. 1972 May 12;237(5350):99–100. doi: 10.1038/237099a0. [DOI] [PubMed] [Google Scholar]
  5. Friedberg E. C. DNA repair of ultraviolet-irradiated bacteriophage T4. Photochem Photobiol. 1975 Apr;21(4):277–289. doi: 10.1111/j.1751-1097.1975.tb06670.x. [DOI] [PubMed] [Google Scholar]
  6. Friedberg E. C., Ganesan A. K., Minton K. N-Glycosidase activity in extracts of Bacillus subtilis and its inhibition after infection with bacteriophage PBS2. J Virol. 1975 Aug;16(2):315–321. doi: 10.1128/jvi.16.2.315-321.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedberg E. C., Ganesan A. K., Seawell P. C. Purification and properties of a pyrimidine dimer-specific endonuclease from E. coli infected with bacteriophage T4. Methods Enzymol. 1980;65(1):191–201. doi: 10.1016/s0076-6879(80)65027-7. [DOI] [PubMed] [Google Scholar]
  8. Friedberg E. C., King J. J. Dark repair of ultraviolet-irradiated deoxyribonucleic acid by bacteriophage T4: purification and characterization of a dimer-specific phage-induced endonuclease. J Bacteriol. 1971 May;106(2):500–507. doi: 10.1128/jb.106.2.500-507.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friedberg E. C., King J. J. Endonucleolytic cleavage of UV-irradiated DNA controlled by the V+ gene in phage T4. Biochem Biophys Res Commun. 1969 Nov 6;37(4):646–651. doi: 10.1016/0006-291x(69)90859-6. [DOI] [PubMed] [Google Scholar]
  10. Friedberg E. C., Lehman I. R. Excision of thymine dimers by proteolytic and amber fragments of E. coli DNA polymerase I. Biochem Biophys Res Commun. 1974 May 7;58(1):132–139. doi: 10.1016/0006-291x(74)90901-2. [DOI] [PubMed] [Google Scholar]
  11. Gordon L. K., Haseltine W. A. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus UV-specific endonucleases. J Biol Chem. 1980 Dec 25;255(24):12047–12050. [PubMed] [Google Scholar]
  12. Grossman L., Riazuddin S., Haseltine W. A., Lindan C. Nucleotide excision repair of damaged DNA. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):947–955. doi: 10.1101/sqb.1979.043.01.104. [DOI] [PubMed] [Google Scholar]
  13. HARM W. Mutants of phage T4 with increased sensitivity to ultraviolet. Virology. 1963 Jan;19:66–71. doi: 10.1016/0042-6822(63)90025-4. [DOI] [PubMed] [Google Scholar]
  14. Haseltine W. A., Gordon L. K., Lindan C. P., Grafstrom R. H., Shaper N. L., Grossman L. Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature. 1980 Jun 26;285(5767):634–641. doi: 10.1038/285634a0. [DOI] [PubMed] [Google Scholar]
  15. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  16. Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3649–3653. doi: 10.1073/pnas.71.9.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
  18. Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
  19. Ljungquist S. A new endonuclease from Escherichia coli acting at apurinic sites in DNA. J Biol Chem. 1977 May 10;252(9):2808–2814. [PubMed] [Google Scholar]
  20. Ljungquist S., Lindahl T., Howard-Flanders P. Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J Bacteriol. 1976 May;126(2):646–653. doi: 10.1128/jb.126.2.646-653.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luria S. E. Reactivation of Irradiated Bacteriophage by Transfer of Self-Reproducing Units. Proc Natl Acad Sci U S A. 1947 Sep;33(9):253–264. doi: 10.1073/pnas.33.9.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minton K., Durphy M., Taylor R., Friedberg E. C. The ultraviolet endonuclease of bacteriophage T4. Further characterization. J Biol Chem. 1975 Apr 25;250(8):2823–2829. [PubMed] [Google Scholar]
  23. Minton K., Friedberg E. C. Letter: Evidence for clustering of pyrimidine dimers on opposite strands of U.V.-irradiated bacteriophage DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Jul;26(1):81–85. doi: 10.1080/09553007414550981. [DOI] [PubMed] [Google Scholar]
  24. Murray M. L. Substrate-specificity of uvr excision repair. Environ Mutagen. 1979;1(4):347–352. doi: 10.1002/em.2860010406. [DOI] [PubMed] [Google Scholar]
  25. Pawl G., Taylor R., Minton K., Friedberg E. C. Enzymes involved in thymine dimer excision in bacteriophage T4-infected Escherichia coli. J Mol Biol. 1976 Nov;108(1):99–109. doi: 10.1016/s0022-2836(76)80097-6. [DOI] [PubMed] [Google Scholar]
  26. Radany E. H., Friedberg E. C. A pyrimidine dimer-DNA glycosylase activity associated with the v gene product of bacterophage T4. Nature. 1980 Jul 10;286(5769):182–185. doi: 10.1038/286182a0. [DOI] [PubMed] [Google Scholar]
  27. Reynolds R. J., Friedberg E. C. Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. J Bacteriol. 1981 May;146(2):692–704. doi: 10.1128/jb.146.2.692-704.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sato K., Sekiguchi M. Studies on temperature-dependent ultraviolet light-sensitive mutants of bacteriophage T4: the structural gene for T4 endonuclease V. J Mol Biol. 1976 Mar 25;102(1):15–26. doi: 10.1016/0022-2836(76)90071-1. [DOI] [PubMed] [Google Scholar]
  29. Seawell P. C., Smith C. A., Ganesan A. K. den V gene of bacteriophage T4 determines a DNA glycosylase specific for pyrimidine dimers in DNA. J Virol. 1980 Sep;35(3):790–796. doi: 10.1128/jvi.35.3.790-796.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seeberg E., Nissen-Meyer J., Strike P. Incision of ultraviolet-irradiated DNA by extracts of E. coli requires three different gene products. Nature. 1976 Oct 7;263(5577):524–526. doi: 10.1038/263524a0. [DOI] [PubMed] [Google Scholar]
  31. Shaper N. L., Grossman L. Purification and properties of the human placental apurinic/apyrimidinic endonuclease. Methods Enzymol. 1980;65(1):216–224. doi: 10.1016/s0076-6879(80)65030-7. [DOI] [PubMed] [Google Scholar]
  32. Verly W. G., Rassart E. Purification of Escherichia coli endonuclease specific for apurinic sites in DNA. J Biol Chem. 1975 Oct 25;250(20):8214–8219. [PubMed] [Google Scholar]
  33. Warner H. R., Christensen L. M., Persson M. L. Evidence that the UV endonuclease activity induced by bacteriophage T4 contains both pyrimidine dimer-DNA glycosylase and apyrimidinic/apurinic endonuclease activities in the enzyme molecule. J Virol. 1981 Oct;40(1):204–210. doi: 10.1128/jvi.40.1.204-210.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weiss B. Endonuclease II of Escherichia coli is exonuclease III. J Biol Chem. 1976 Apr 10;251(7):1896–1901. [PubMed] [Google Scholar]
  35. White B. J., Hochhauser S. J., Cintron N. M., Weiss B. Genetic mapping of xthA, the structural gene for exonuclease III in Escherichia coli K-12. J Bacteriol. 1976 Jun;126(3):1082–1088. doi: 10.1128/jb.126.3.1082-1088.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wood W. B., Revel H. R. The genome of bacteriophage T4. Bacteriol Rev. 1976 Dec;40(4):847–868. doi: 10.1128/br.40.4.847-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yajko D. M., Weiss B. Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Feb;72(2):688–692. doi: 10.1073/pnas.72.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yasuda S., Sekiguchi M. Further purification and characterization of T4 endonuclease V. Biochim Biophys Acta. 1976 Aug 18;442(2):197–207. doi: 10.1016/0005-2787(76)90490-1. [DOI] [PubMed] [Google Scholar]
  39. Yasuda S., Sekiguchi M. T4 endonuclease involved in repair of DNA. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1839–1845. doi: 10.1073/pnas.67.4.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zelle B., Lohman P. H. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Mutat Res. 1979 Sep;62(2):363–368. doi: 10.1016/0027-5107(79)90091-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES