Abstract
The T4D bacteriophage gene 28 product is a component of the central plug of the tail baseplate, as shown by the following two independent lines of evidence. (i) A highly sensitive method for radioactive labeling of only tail baseplate plug components was developed. These labeled plug components were incorporated by a complementation procedure into new phage particles and were analyzed by radioautography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three new structural proteins were found in addition to the three known tail plug proteins (i.e., gP29, gP27, and gP5). One of the three newly identified components had a molecular weight of 24,000 to 25,000 and appeared to be a product of T4D gene 28. (ii) Characterization of mutants of Escherichia coli bacteriophage T4D which produced altered gene 28 products also indicated that the gene 28 product was a viral tail component. T4D 28ts phage particles produced at the permissive temperature had altered heat labilities compared with parent T4D particles. We isolated a single-step temperature revertant of T4D 28ts and found that it produced phage particles which phenotypically resembled the original T4D particles. Since the properties of the phage baseplate components usually determine heat lability, these two changes in physical stability after two sequential single mutations in gene 28 supported the other evidence that the gene 28 product was a viral baseplate component. Also, compared with parent T4D particles, T4D 28ts and T4D 28am viral particles adsorbed at different rates to various types of host cells. In addition, T4D 28ts particles exhibited a different host range than parent T4D particles. This T4D mutant formed plaques with an extremely low efficiency on all E. coli K-12 strains tested. We found that although T4D 28ts particles adsorbed rapidly and irreversibly to the E. coli K-12 strains, as judged by gene rescue experiments, these particles were not able to inject their DNA into the E. coli K-12 strains. On the other hand, the T4D 28ts revertant had a plating efficiency on E. coli K-12 strains that was quite similar to the plating efficiency of the original parent, T4D. These properties of phage particles containing an altered gene 28 product supported the analytical finding that the gene 28 product is a structural component of the central plug of the T4D tail baseplate. They also indicated that this component plays a role in both host cell recognition and viral DNA injection.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baugh C. M., Krumdieck C. L. Naturally occurring folates. Ann N Y Acad Sci. 1971 Nov 30;186:7–28. [PubMed] [Google Scholar]
- Capco G. R., Krupp J. R., Mathews C. K. Bacteriophage-coded thymidylate synthetase: characteristics of the T4 and T5 enzymes. Arch Biochem Biophys. 1973 Oct;158(2):726–735. doi: 10.1016/0003-9861(73)90567-5. [DOI] [PubMed] [Google Scholar]
- Capco G. R., Mathews C. K. Bacteriophage-coded thymidylate synthetase. Evidence that the T4 enzyme is a capsid protein. Arch Biochem Biophys. 1973 Oct;158(2):736–743. doi: 10.1016/0003-9861(73)90568-7. [DOI] [PubMed] [Google Scholar]
- Crowther R. A., Lenk E. V., Kikuchi Y., King J. Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol. 1977 Nov 5;116(3):489–523. doi: 10.1016/0022-2836(77)90081-x. [DOI] [PubMed] [Google Scholar]
- Dickson R. C., Barnes S. L., Eiserling F. A. Structural proteins of bacteriophage T4. J Mol Biol. 1970 Nov 14;53(3):461–474. doi: 10.1016/0022-2836(70)90077-x. [DOI] [PubMed] [Google Scholar]
- Edgar R. S., Lielausis I. Some steps in the assembly of bacteriophage T4. J Mol Biol. 1968 Mar 14;32(2):263–276. doi: 10.1016/0022-2836(68)90008-9. [DOI] [PubMed] [Google Scholar]
- Hall D. H., Tessman I., Karlström O. Linkage of T4 genes controlling a series of steps in pyrimidine biosynthesis. Virology. 1967 Mar;31(3):442–448. doi: 10.1016/0042-6822(67)90224-3. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol. 1975 Dec 25;99(4):645–672. doi: 10.1016/s0022-2836(75)80178-1. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol. 1975 Dec 25;99(4):673–694. doi: 10.1016/s0022-2836(75)80179-3. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 1975 Dec 25;99(4):695–716. doi: 10.1016/s0022-2836(75)80180-x. [DOI] [PubMed] [Google Scholar]
- King J. Assembly of the tail of bacteriophage T4. J Mol Biol. 1968 Mar 14;32(2):231–262. doi: 10.1016/0022-2836(68)90007-7. [DOI] [PubMed] [Google Scholar]
- King J., Laemmli U. K. Bacteriophage T4 tail assembly: structural proteins and their genetic identification. J Mol Biol. 1973 Apr 5;75(2):315–337. doi: 10.1016/0022-2836(73)90024-7. [DOI] [PubMed] [Google Scholar]
- King J., Mykolajewycz N. Bacteriophage T4 tail assembly: proteins of the sheath, core and baseplate. J Mol Biol. 1973 Apr 5;75(2):339–358. doi: 10.1016/0022-2836(73)90025-9. [DOI] [PubMed] [Google Scholar]
- Kozloff L. M. Folyl polyglutamate and folate-requiring enzymes as bacteriophage T4D baseplate structural components. Biosystems. 1980;12(3-4):239–247. doi: 10.1016/0303-2647(80)90020-9. [DOI] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M. Bacteriophage tail components. IV. Pteroyl polyglutamate synthesis in T4D-infected Escherichia coli B. J Virol. 1973 May;11(5):630–636. doi: 10.1128/jvi.11.5.630-636.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M., Baugh C. M. Bacteriophage tail components. V. Complementation of T4D gene 28 - -infected bacterial extracts with pteroyl hexaglutamate. J Virol. 1973 May;11(5):637–641. doi: 10.1128/jvi.11.5.637-641.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M., Crosby L. K. Bacteriophage T4 baseplate components. I. Binding and location of the folic acid. J Virol. 1975 Dec;16(6):1391–1400. doi: 10.1128/jvi.16.6.1391-1400.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M., Crosby L. K. Bacteriophage T4 virion baseplate thymidylate synthetase and dihydrofolate reductase. J Virol. 1977 Sep;23(3):637–644. doi: 10.1128/jvi.23.3.637-644.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M., Crosby L. K. Bacteriophage tail components. 3. Use of synthetic pteroyl hexaglutamate for T4D tail plate assembly. J Virol. 1970 Dec;6(6):754–759. doi: 10.1128/jvi.6.6.754-759.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M., Crosby L. K., Rao N., Chapman V. A., DeLong S. S. Bacteriophage tail components. I. Pteroyl polyglutamates in T-even bacteriophages. J Virol. 1970 Jun;5(6):726–739. doi: 10.1128/jvi.5.6.726-739.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M. Dual functions of bacteriophage T4D gene 28 product: structural component of the viral tail baseplate central plug and cleavage enzyme for folyl polyglutamates. II. Folate metabolism and polyglutamate cleavage activity of uninfected and infected Escherichia coli cells and bacteriophage. J Virol. 1981 Dec;40(3):645–656. doi: 10.1128/jvi.40.3.645-656.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozloff L. M., Lute M. Folic acid, a structural component of T4 bacteriophage. J Mol Biol. 1965 Jul;12(3):780–792. doi: 10.1016/s0022-2836(65)80327-8. [DOI] [PubMed] [Google Scholar]
- Krauss S. W., Stollar B. D., Friedkin M. Genetic and immunological studies of bacteriophage T4 thymidylate synthetase. J Virol. 1973 May;11(5):783–791. doi: 10.1128/jvi.11.5.783-791.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura K., Kozloff L. M. Folate polyglutamates in T4D bacteriophage and T4D-infected Escherichia coli. Biochim Biophys Acta. 1978 May 3;540(2):313–319. doi: 10.1016/0304-4165(78)90144-7. [DOI] [PubMed] [Google Scholar]
- Pugsley A. P., Schnaitman C. A. Outer membrane proteins of Escherichia coli. VII. Evidence that bacteriophage-directed protein 2 functions as a pore. J Bacteriol. 1978 Mar;133(3):1181–1189. doi: 10.1128/jb.133.3.1181-1189.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snustad D. P. Dominance interactions in Escherichia coli cells mixedly infected with bacteriophage T4D wild-type and amber mutants and their possible implications as to type of gene-product function: catalytic vs. stoichiometric. Virology. 1968 Aug;35(4):550–563. doi: 10.1016/0042-6822(68)90285-7. [DOI] [PubMed] [Google Scholar]
- Vanderslice R. W., Yegian C. D. The identification of late bacteriophage T4 proteins on sodium dodecyl sulfate polyacrylamide gels. Virology. 1974 Jul;60(1):265–275. doi: 10.1016/0042-6822(74)90384-5. [DOI] [PubMed] [Google Scholar]
- Wood W. B., Revel H. R. The genome of bacteriophage T4. Bacteriol Rev. 1976 Dec;40(4):847–868. doi: 10.1128/br.40.4.847-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zorzopulos J., Kozloff L. M., Chapman V., DeLong S. Bacteriophage T4D receptors and the Escherichia coli cell wall structure: role of spherical particles and protein b of the cell wall in bacteriophage infection. J Bacteriol. 1979 Jan;137(1):545–555. doi: 10.1128/jb.137.1.545-555.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
