Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1982 Mar;41(3):1055–1062. doi: 10.1128/jvi.41.3.1055-1062.1982

In vitro reassembly of vesicular stomatitis virus skeletons.

W W Newcomb, G J Tobin, J J McGowan, J C Brown
PMCID: PMC256843  PMID: 6284961

Abstract

Vesicular stomatitis virus (VSV) has been disrupted with nonionic detergent plus 0.5 M NaCl under conditions which result in solubilization of the viral glycoprotein (G), matrix protein (M), and lipids, leaving the nucleocapsid in a highly extended state. Dialysis of these suspensions to remove NaCl was found to result in reassociation of nucleocapsids with M protein. Reassociated structures were highly condensed and similar in appearance to "native" VSV skeletons produced by extraction of virions with detergent at low ionic strength. For instance, electron microscopic analysis revealed that, like "native" skeletons, "reassembled" skeletons were cylindrical in shape, with diameters in the range of 51.0 to 55.0 nm and cross-striations spaced approximately 6.0 nm apart along the length of the structure. Like native skeletons, reassembled skeletons were found by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to contain the viral N and M proteins, but they lacked the glycoprotein entirely. Both native and reassembled skeletons were found to be capable of in vitro RNA-dependent RNA synthesis (transcription). In vivo skeleton assembly required the presence of M protein and nucleocapsids. No skeleton-like structures were formed by dialysis of nucleocapsids in the absence of M protein or of M protein in the absence of nucleocapsids. These results provide strong support for the view that the VSV M protein plays a functional role in condensing the viral nucleocapsid in vitro and raise the possibility that it may play a similar role in vivo.

Full text

PDF
1055

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cartwright B., Smale C. J., Brown F. Dissection of vesicular stomatitis virus into the infective ribonucleoprotein and immunizing components. J Gen Virol. 1970 Apr;7(1):19–32. doi: 10.1099/0022-1317-7-1-19. [DOI] [PubMed] [Google Scholar]
  2. Cartwright B., Talbot P., Brown F. The proteins of biologically active sub-units of vesicular stomatitis virus. J Gen Virol. 1970 Jun;7(3):267–272. doi: 10.1099/0022-1317-7-3-267. [DOI] [PubMed] [Google Scholar]
  3. Colonno R. J., Banerjee A. K. A unique RNA species involved in initiation of vesicular stomatitis virus RNA transcription in vitro. Cell. 1976 Jun;8(2):197–204. doi: 10.1016/0092-8674(76)90003-9. [DOI] [PubMed] [Google Scholar]
  4. Emerson S. U., Wagner R. R. Dissociation and reconstitution of the transcriptase and template activities of vesicular stomatitis B and T virions. J Virol. 1972 Aug;10(2):297–309. doi: 10.1128/jvi.10.2.297-309.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fong B. S., Hunt R. C., Brown J. C. Asymmetric distribution of phosphatidylethanolamine in the membrane of vesicular stomatitis virus. J Virol. 1976 Dec;20(3):658–663. doi: 10.1128/jvi.20.3.658-663.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heggeness M. H., Scheid A., Choppin P. W. Conformation of the helical nucleocapsids of paramyxoviruses and vesicular stomatitis virus: reversible coiling and uncoiling induced by changes in salt concentration. Proc Natl Acad Sci U S A. 1980 May;77(5):2631–2635. doi: 10.1073/pnas.77.5.2631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Helenius A., Kartenbeck J. The effects of octylglucoside on the Semliki forest virus membrane. Evidence for a spike-protein--nucleocapsid interaction. Eur J Biochem. 1980 May;106(2):613–618. doi: 10.1111/j.1432-1033.1980.tb04609.x. [DOI] [PubMed] [Google Scholar]
  8. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  9. Hunt D. M., Wagner R. R. Inhibition by aurintricarboxylic acid and polyethylene sulfonate of RNA transcription of vesicular stomatitis virus. J Virol. 1975 Nov;16(5):1146–1153. doi: 10.1128/jvi.16.5.1146-1153.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knipe D. M., Baltimore D., Lodish H. F. Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus. J Virol. 1977 Mar;21(3):1149–1158. doi: 10.1128/jvi.21.3.1149-1158.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Miller D. K., Feuer B. I., Vanderoef R., Lenard J. Reconstituted G protein-lipid vesicles from vesicular stomatitis virus and their inhibition of VSV infection. J Cell Biol. 1980 Feb;84(2):421–429. doi: 10.1083/jcb.84.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagpal M. L., Brown J. C. Protein and glycoprotein components of phagosome membranes derived from mouse L cells. Int J Biochem. 1980;11(2):127–138. doi: 10.1016/0020-711x(80)90245-1. [DOI] [PubMed] [Google Scholar]
  14. Newcomb W. W., Brown J. C. Role of the vesicular stomatitis virus matrix protein in maintaining the viral nucleocapsid in the condensed form found in native virions. J Virol. 1981 Jul;39(1):295–299. doi: 10.1128/jvi.39.1.295-299.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shimizu K., Isida N. The smallest protein of Sendi virus: its candidate function of binding nucleocaspsid to envelope. Virology. 1975 Oct;67(2):427–437. [PubMed] [Google Scholar]
  16. Simonsen C. C., Batt-Humphries S., Summers D. F. RNA synthesis of vesicular stomatitis virus-infected cells: in vivo regulation of replication. J Virol. 1979 Jul;31(1):124–132. doi: 10.1128/jvi.31.1.124-132.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stubbs G. W., Smith H. G., Jr, Litman B. J. Alkyl glucosides as effective solubilizing agents for bovine rhodopsin. A comparison with several commonly used detergents. Biochim Biophys Acta. 1976 Feb 19;426(1):46–56. doi: 10.1016/0005-2736(76)90428-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES