Skip to main content
Journal of the National Medical Association logoLink to Journal of the National Medical Association
letter
. 1986 Nov;78(11):1053–1056.

Anti-Sickling Effect of Dietary Thiocyanate in Prophylactic Control of Sickle Cell Anemia

Oji Agbai
PMCID: PMC2571427  PMID: 3795284

Abstract

As a clinical entity, sickle cell anemia (SCA) is known to be relatively rarer in Africans than in the African-American population of the United States. Paradoxically, sickle cell trait (SCT), the non-anemic, heterozygous condition, is about three times more common among indigenous Africans than in African-Americans. The ratio of SCA to SCT is 1:50 for African-Americans, and less than 1:1,000 for tropical Africans. This etiological disparity is attributed to an anti-sickling agent, thiocyanate, (SCN-) found abundantly in staple African foods, such as the African yam (Dioscorea sp) and cassava (Manihot utilissima). Staple American foods have negligible SCN-concentrations. Nonstaple foods in the American diet, such as carrots, cabbage, and radishes, have SCN- levels far below the African yam and cassava. This finding explains the high incidence of SCA among African-Americans and its rarity in Africans.

The author concludes that SCA is a congenital deficiency anemia, ameliorable by prophylactic diets of foods with high SCN- contents. Thus, “thiocyanate deficiency anemia” is nutritionally a more correct clinical status for those born with the homozygous sickle hemoglobin genome. Just as any iron undernourished person can suffer from iron deficiency anemia, sickle hemoglobin homozygotes suffer from “thiocyanate deficiency anemia” when they subsist on SCN-deficient foods. This article reviews the role of dietary SCN- in SCA control.

Full text

PDF
1053

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C. Notes on sickle-cell polymorphism. Ann Hum Genet. 1954 Jul;19(1):39–51. doi: 10.1111/j.1469-1809.1954.tb01261.x. [DOI] [PubMed] [Google Scholar]
  2. Bell R. M., Gelfand M. Sickle cell disease in Rhodesia. J Trop Med Hyg. 1971 Jul;74(7):148–153. [PubMed] [Google Scholar]
  3. Cerami A. Cyanate as an inhibitor of red-cell sickling. N Engl J Med. 1972 Oct 19;287(16):807–812. doi: 10.1056/NEJM197210192871606. [DOI] [PubMed] [Google Scholar]
  4. Cerami A., Manning J. M. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1180–1183. doi: 10.1073/pnas.68.6.1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung J., Wood J. L. Oxidation of thiocyanate to cyanide catalyzed by hemoglobin. J Biol Chem. 1971 Feb 10;246(3):555–560. [PubMed] [Google Scholar]
  6. EDINGTON G. M., LEHMANN H. Expression of the sickle-cell gene in Africa. Br Med J. 1955 May 28;1(4925):1308–1311. doi: 10.1136/bmj.1.4925.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gillette P. N., Manning J. M., Cerami A. Increased survival of sickle-cell erythrocytes after treatment in vitro with sodium cyanate. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2791–2793. doi: 10.1073/pnas.68.11.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillette P. N., Peterson C. M., Manning J. M., Cerami A. Preliminary clinical trials with cyanate. Adv Exp Med Biol. 1972;28:261–278. doi: 10.1007/978-1-4684-3222-0_22. [DOI] [PubMed] [Google Scholar]
  9. Houston R. G. Letter: Dietary nitriloside and sickle cell anemia in Africa. Am J Clin Nutr. 1974 Aug;27(8):766–769. doi: 10.1093/ajcn/27.8.766. [DOI] [PubMed] [Google Scholar]
  10. Houston R. G. Sickle cell anemia and dietary precursors of cyanate. Am J Clin Nutr. 1973 Nov;26(11):1261–1264. doi: 10.1093/ajcn/26.11.1261. [DOI] [PubMed] [Google Scholar]
  11. Konotey-Ahulu F. I., Ringelhann B. Sickle-cell anaemia, sickle-cell thalassaemia, sickle-cell haemoglobin C disease, and asymptomatic haemoglobin C thalassaemia in one Ghanaian family. Br Med J. 1969 Mar 8;1(5644):607–612. doi: 10.1136/bmj.1.5644.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kraus L. M., Rasad A., Kraus A. P. Carbamyl phosphate modification of hemoglobin S structure resulting in altered sickling. Adv Exp Med Biol. 1972;28:279–296. doi: 10.1007/978-1-4684-3222-0_23. [DOI] [PubMed] [Google Scholar]
  13. LEHMANN H., RAPER A. B. Maintenance of high sickling rate in an African community. Br Med J. 1956 Aug 11;2(4988):333–336. doi: 10.1136/bmj.2.4988.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehmann H. Sickle cell anemia 35 years ago: reminiscence of early African studies. Am J Pediatr Hematol Oncol. 1984 Spring;6(1):72–76. [PubMed] [Google Scholar]
  15. MONTGOMERY R. D. THE MEDICAL SIGNIFICANCE OF CYANOGEN IN PLANT FOODSTUFFS. Am J Clin Nutr. 1965 Aug;17:103–113. doi: 10.1093/ajcn/17.2.103. [DOI] [PubMed] [Google Scholar]
  16. Manning J. M., Cerami A., Gillette P. N., De Furia F. G., Miller D. R. Chemical and biological aspects of the inhibition of red blood cell sickling by cyanate. Adv Exp Med Biol. 1972;28:253–260. doi: 10.1007/978-1-4684-3222-0_21. [DOI] [PubMed] [Google Scholar]
  17. Neel J. V. The Inheritance of Sickle Cell Anemia. Science. 1949 Jul 15;110(2846):64–66. doi: 10.1126/science.110.2846.64. [DOI] [PubMed] [Google Scholar]
  18. Oke O. L. The role of hydrocyanic acid in nutrition. World Rev Nutr Diet. 1969;11:170–198. doi: 10.1159/000387578. [DOI] [PubMed] [Google Scholar]
  19. Serjeant G. R., Richards R., Barbor P. R., Milner P. F. Relatively benign sickle-cell anaemia in 60 patients aged over 30 in the West Indies. Br Med J. 1968 Jul 13;3(5610):86–91. doi: 10.1136/bmj.3.5610.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WOKES F., PICARD C. W. The role of vitamin B12 in human nutrition. Am J Clin Nutr. 1955 Sep-Oct;3(5):383–390. doi: 10.1093/ajcn/3.5.383. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the National Medical Association are provided here courtesy of National Medical Association

RESOURCES