Abstract
The involvement of CD4+ T lymphocytes in the defense mechanisms against intracellular pathogens is widely recognized. Little information is available on the generation and specificity of the cytotoxic cells that eliminate human monocytes/macrophages infected with mycobacteria. In this work, we tested whether mononuclear cells from leprosy patients could generate cytotoxic T-cell activity against autologous macrophages pulsed with Mycobacterium leprae or purified protein derivative (PPD) in a 4-h 51Cr release assay. Peripheral blood mononuclear cells from normal Mycobacterium bovis BCG-immunized controls or from leprosy patients stimulated with antigen for 7 days were used as effector cells. Paucibacillary (PB) patients and normal controls yielded more active effector cells in this system than multibacillary (MB) patients. MB patients were able to develop cytotoxicity against M. leprae, BCG, or PPD, in contrast with the immunological anergy widely described. We did not find cytotoxicity against unpulsed macrophages. Cross-reactivity was observed between PPD, BCG, and M. leprae. Only antigen-pulsed autologous macrophages were suitable as target cells. M. leprae-induced cytotoxic cells were found in both CD4+ CD8- and CD4- CD8+ T-cell subsets, whereas CD4+ cells were the main component of PPD-induced cytotoxicity. In MB patients, BCG-induced cytotoxic cells were better killers of M. leprae-pulsed macrophages than cells induced by M. leprae. This is an interesting finding in view of the ongoing vaccination trials. The involvement of CD4- or CD8-mediated cytotoxicity may be important in the balance between protection and tissue or nerve damage.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ab B. K., Kiessling R., Van Embden J. D., Thole J. E., Kumararatne D. S., Pisa P., Wondimu A., Ottenhoff T. H. Induction of antigen-specific CD4+ HLA-DR-restricted cytotoxic T lymphocytes as well as nonspecific nonrestricted killer cells by the recombinant mycobacterial 65-kDa heat-shock protein. Eur J Immunol. 1990 Feb;20(2):369–377. doi: 10.1002/eji.1830200221. [DOI] [PubMed] [Google Scholar]
- Bloom B. R., Godal T. Selective primary health care: strategies for control of disease in the developing world. V. Leprosy. Rev Infect Dis. 1983 Jul-Aug;5(4):765–780. doi: 10.1093/clinids/5.4.765. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Chiplunkar S. V., Deshmukh M. V., Samson P. D., Butlin R., Bhatki W. S., Chulawalla R. G., Deo M. G., Gangal S. G. Natural killer-cell-mediated and antibody-dependent cellular cytotoxicity in leprosy. Int J Lepr Other Mycobact Dis. 1990 Jun;58(2):334–341. [PubMed] [Google Scholar]
- Chiplunkar S., De Libero G., Kaufmann S. H. Mycobacterium leprae-specific Lyt-2+ T lymphocytes with cytolytic activity. Infect Immun. 1986 Dec;54(3):793–797. doi: 10.1128/iai.54.3.793-797.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A. Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol. 1978 Sep;121(3):813–816. [PubMed] [Google Scholar]
- Convit J., Pinardi M. E., Rodríguez Ochoa G., Ulrich M., Avila J. L., Goihman M. Elimination of Mycobacterium leprae subsequent to local in vivo activation of macrophages in lepromatous leprosy by other mycobacteria. Clin Exp Immunol. 1974 Jun;17(2):261–265. [PMC free article] [PubMed] [Google Scholar]
- Convit J., Ulrich M., Aranzazu N., Castellanos P. L., Pinardi M. E., Reyes O. The development of a vaccination model using two microorganisms and its application in leprosy and leishmaniasis. Lepr Rev. 1986 Dec;57 (Suppl 2):263–273. doi: 10.5935/0305-7518.19860080. [DOI] [PubMed] [Google Scholar]
- De Libero G., Flesch I., Kaufmann S. H. Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol. 1988 Jan;18(1):59–66. doi: 10.1002/eji.1830180110. [DOI] [PubMed] [Google Scholar]
- Fine P. E., Ponnighaus J. M., Maine N., Clarkson J. A., Bliss L. Protective efficacy of BCG against leprosy in Northern Malawi. Lancet. 1986 Aug 30;2(8505):499–502. doi: 10.1016/s0140-6736(86)90367-3. [DOI] [PubMed] [Google Scholar]
- Germain R. N. Immunology. The ins and outs of antigen processing and presentation. Nature. 1986 Aug 21;322(6081):687–689. doi: 10.1038/322687a0. [DOI] [PubMed] [Google Scholar]
- Godal T., Myklestad B., Samuel D. R., Myrvang B. Characterization of the cellular immune defect in lepromatous leprosy: a specific lack of circulating Mycobacterium leprae-reactive lymphocytes. Clin Exp Immunol. 1971 Dec;9(6):821–831. [PMC free article] [PubMed] [Google Scholar]
- Haanen J. B., de Waal Malefijt R., Res P. C., Kraakman E. M., Ottenhoff T. H., de Vries R. R., Spits H. Selection of a human T helper type 1-like T cell subset by mycobacteria. J Exp Med. 1991 Sep 1;174(3):583–592. doi: 10.1084/jem.174.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn H., Kaufmann S. H. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis. 1981 Nov-Dec;3(6):1221–1250. doi: 10.1093/clinids/3.6.1221. [DOI] [PubMed] [Google Scholar]
- Hancock G. E., Cohn Z. A., Kaplan G. The generation of antigen-specific, major histocompatibility complex-restricted cytotoxic T lymphocytes of the CD4+ phenotype. Enhancement by the cutaneous administration of interleukin 2. J Exp Med. 1989 Mar 1;169(3):909–919. doi: 10.1084/jem.169.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haregewoin A., Mustafa A. S., Helle I., Waters M. F., Leiker D. L., Godal T. Reversal by interleukin-2 of the T cell unresponsiveness of lepromatous leprosy to Mycobacterium leprae. Immunol Rev. 1984 Aug;80:77–86. doi: 10.1111/j.1600-065x.1984.tb00495.x. [DOI] [PubMed] [Google Scholar]
- Kaleab B., Ottenoff T., Converse P., Halapi E., Tadesse G., Rottenberg M., Kiessling R. Mycobacterial-induced cytotoxic T cells as well as nonspecific killer cells derived from healthy individuals and leprosy patients. Eur J Immunol. 1990 Dec;20(12):2651–2659. doi: 10.1002/eji.1830201219. [DOI] [PubMed] [Google Scholar]
- Kaplan G., Nusrat A., Witmer M. D., Nath I., Cohn Z. A. Distribution and turnover of Langerhans cells during delayed immune responses in human skin. J Exp Med. 1987 Mar 1;165(3):763–776. doi: 10.1084/jem.165.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan G., Sampaio E. P., Walsh G. P., Burkhardt R. A., Fajardo T. T., Guido L. S., de Miranda Machado A., Cellona R. V., Abalos R. M., Sarno E. N. Influence of Mycobacterium leprae and its soluble products on the cutaneous responsiveness of leprosy patients to antigen and recombinant interleukin 2. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6269–6273. doi: 10.1073/pnas.86.16.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan G., Sheftel G., Job C. K., Mathur N. K., Nath I., Cohn Z. A. Efficacy of a cell-mediated reaction to the purified protein derivative of tuberculin in the disposal of Mycobacterium leprae from human skin. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5210–5214. doi: 10.1073/pnas.85.14.5210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan G., Van Voorhis W. C., Sarno E. N., Nogueira N., Cohn Z. A. The cutaneous infiltrates of leprosy. A transmission electron microscopy study. J Exp Med. 1983 Oct 1;158(4):1145–1159. doi: 10.1084/jem.158.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufmann S. H., Chiplunkar S., Flesch I., De Libero G. Possible role of helper and cytolytic T cells in mycobacterial infections. Lepr Rev. 1986 Dec;57 (Suppl 2):101–111. doi: 10.5935/0305-7518.19860060. [DOI] [PubMed] [Google Scholar]
- Kay H. D., Bonnard G. D., West W. H., Herberman R. B. A functional comparison of human Fc-receptor-bearing lymphocytes active in natural cytotoxicity and antibody-dependent cellular cytotoxicity. J Immunol. 1977 Jun;118(6):2058–2066. [PubMed] [Google Scholar]
- Kumararatne D. S., Pithie A. S., Drysdale P., Gaston J. S., Kiessling R., Iles P. B., Ellis C. J., Innes J., Wise R. Specific lysis of mycobacterial antigen-bearing macrophages by class II MHC-restricted polyclonal T cell lines in healthy donors or patients with tuberculosis. Clin Exp Immunol. 1990 Jun;80(3):314–323. doi: 10.1111/j.1365-2249.1990.tb03287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lwin K., Sundaresan T., Gyi M. M., Bechelli L. M., Tamondong C., Garbajosa P. G., Sansarricq H., Noordeen S. K. BCG vaccination of children against leprosy: fourteen-year findings of the trial in Burma. Bull World Health Organ. 1985;63(6):1069–1078. [PMC free article] [PubMed] [Google Scholar]
- Mackaness G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med. 1969 May 1;129(5):973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modlin R. L., Hofman F. M., Taylor C. R., Rea T. H. T lymphocyte subsets in the skin lesions of patients with leprosy. J Am Acad Dermatol. 1983 Feb;8(2):182–189. doi: 10.1016/s0190-9622(83)70021-6. [DOI] [PubMed] [Google Scholar]
- Modlin R. L., Melancon-Kaplan J., Young S. M., Pirmez C., Kino H., Convit J., Rea T. H., Bloom B. R. Learning from lesions: patterns of tissue inflammation in leprosy. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1213–1217. doi: 10.1073/pnas.85.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mustafa A. S., Godal T. BCG induced CD4+ cytotoxic T cells from BCG vaccinated healthy subjects: relation between cytotoxicity and suppression in vitro. Clin Exp Immunol. 1987 Aug;69(2):255–262. [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Kaplan G., Levis W. R., Nusrat A., Witmer M. D., Sherwin S. A., Job C. K., Horowitz C. R., Steinman R. M., Cohn Z. A. Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. N Engl J Med. 1986 Jul 3;315(1):6–15. doi: 10.1056/NEJM198607033150102. [DOI] [PubMed] [Google Scholar]
- Orme I. M., Collins F. M. Adoptive protection of the Mycobacterium tuberculosis-infected lung. Dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity to tuberculin. Cell Immunol. 1984 Mar;84(1):113–120. doi: 10.1016/0008-8749(84)90082-0. [DOI] [PubMed] [Google Scholar]
- Orme I. M. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol. 1987 Jan 1;138(1):293–298. [PubMed] [Google Scholar]
- Ottenhoff T. H., Converse P. J., Gebre N., Wondimu A., Ehrenberg J. P., Kiessling R. T cell responses to fractionated Mycobacterium leprae antigens in leprosy. The lepromatous nonresponder defect can be overcome in vitro by stimulation with fractionated M. leprae components. Eur J Immunol. 1989 Apr;19(4):707–713. doi: 10.1002/eji.1830190421. [DOI] [PubMed] [Google Scholar]
- Ottenhoff T. H., Wondimu A., Reddy N. N. A comparative study on the effects of rIL-4, rIL-2, rIFN-gamma, and rTNF-alpha on specific T-cell non-responsiveness to mycobacterial antigens in lepromatous leprosy patients in vitro. Scand J Immunol. 1990 May;31(5):553–565. doi: 10.1111/j.1365-3083.1990.tb02806.x. [DOI] [PubMed] [Google Scholar]
- Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
- Siegel J. P. Effects of interferon-gamma on the activation of human T lymphocytes. Cell Immunol. 1988 Feb;111(2):461–472. doi: 10.1016/0008-8749(88)90109-8. [DOI] [PubMed] [Google Scholar]
- Smith L. E., Rodrigues M., Russell D. G. The interaction between CD8+ cytotoxic T cells and Leishmania-infected macrophages. J Exp Med. 1991 Sep 1;174(3):499–505. doi: 10.1084/jem.174.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhoff U., Kaufmann S. H. Specific lysis by CD8+ T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur J Immunol. 1988 Jun;18(6):969–972. doi: 10.1002/eji.1830180622. [DOI] [PubMed] [Google Scholar]
- Van Voorhis W. C., Kaplan G., Sarno E. N., Horwitz M. A., Steinman R. M., Levis W. R., Nogueira N., Hair L. S., Gattass C. R., Arrick B. A. The cutaneous infiltrates of leprosy: cellular characteristics and the predominant T-cell phenotypes. N Engl J Med. 1982 Dec 23;307(26):1593–1597. doi: 10.1056/NEJM198212233072601. [DOI] [PubMed] [Google Scholar]
- del Carmen Sasiain M., de la Barrera S., Ruibal-Ares B., Cardama J. E., Gatti J. C., de Bracco M. M. Suppressor response in lepromatous leprosy patients: role of Leu 2a cells. Immunology. 1987 Jan;60(1):13–18. [PMC free article] [PubMed] [Google Scholar]
