Abstract
Phenol oxidase enzymes, linked to virulence in Cryptococcus neoformans, were prepared from broken cells. More enzyme activity was found in the ultracentrifugation supernatant; less was found in the membrane fraction. Phenol oxidases were located in acrylamide gel electropherograms by activity staining with L-dihydroxyphenylalanine (DOPA). Mobility differences between soluble and solubilized membrane-bound phenol oxidases were not found. Comparison of enzymes produced at 25 and 37 degrees C revealed that the enzyme had lower activity and lower mobility at 37 degrees C. The mobility of 25 degrees C phenol oxidases from strains of C. neoformans var. gattii was lower than that of those from C. neoformans var. neoformans. Half of the phenol oxidase produced at 25 degrees C was bound by concanavalin A, while that produced at 37 degrees C was not bound. However, glucose starvation of cultures at 25 degrees C overnight resulted in increased amounts of enzyme which did not bind to concanavalin A. A given strain of C. neoformans produces different species of phenol oxidase under different culture conditions.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clutterbuck A. J. Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol. 1972 May;70(3):423–435. doi: 10.1099/00221287-70-3-423. [DOI] [PubMed] [Google Scholar]
- Hopfer R. L., Gröschel D. Six-hour pigmentation test for the identification of Cryptococcus neoformans. J Clin Microbiol. 1976 Aug;2(2):96–98. [PMC free article] [PubMed] [Google Scholar]
- Ikeda R., Shinoda T., Fukazawa Y., Kaufman L. Antigenic characterization of Cryptococcus neoformans serotypes and its application to serotyping of clinical isolates. J Clin Microbiol. 1982 Jul;16(1):22–29. doi: 10.1128/jcm.16.1.22-29.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Emery H. S. Catecholamine uptake, melanization, and oxygen toxicity in Cryptococcus neoformans. J Bacteriol. 1991 Jan;173(1):401–403. doi: 10.1128/jb.173.1.401-403.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Emery H. S. Temperature regulation of the cryptococcal phenoloxidase. J Med Vet Mycol. 1991;29(2):121–124. doi: 10.1080/02681219180000201. [DOI] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kwon-Chung K. J., Rhodes J. C. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986 Jan;51(1):218–223. doi: 10.1128/iai.51.1.218-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Moore B. M., Flurkey W. H. Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J Biol Chem. 1990 Mar 25;265(9):4982–4988. [PubMed] [Google Scholar]
- Polacheck I., Hearing V. J., Kwon-Chung K. J. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1212–1220. doi: 10.1128/jb.150.3.1212-1220.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White C. W., Cherniak R., Jacobson E. S. Side group addition by xylosyltransferase and glucuronyltransferase in biosynthesis of capsular polysaccharide in Cryptococcus neoformans. J Med Vet Mycol. 1990;28(4):289–301. doi: 10.1080/02681219080000381. [DOI] [PubMed] [Google Scholar]