Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1992 Sep;60(9):3807–3813. doi: 10.1128/iai.60.9.3807-3813.1992

Chelating agents inhibit activity and prevent expression of streptococcal glucan-binding lectins.

Lü-Lü 1, J S Singh 1, M Y Galperin 1, D Drake 1, K G Taylor 1, R J Doyle 1
PMCID: PMC257393  PMID: 1500189

Abstract

Several of the cariogenic mutans streptococci produce cell wall-associated glucan-binding lectins (GBLs). The lectins bind alpha-1,6-linked glucans and have no affinity for other polysaccharides or anomeric linkages. When citrate or lactate was included in the growth medium, expression of the activities of the GBLs of Streptococcus cricetus and S. sobrinus was prevented. Furthermore, chelating agents, including citrate, lactate, EDTA, and acetylacetone, were able to reversibly inhibit glucan-induced aggregation of GBL+ streptococci. In addition, the chelating agents prevented sucrose-dependent streptococcal adhesion to glass surfaces and dispersed preformed adherent masses of the streptococci. Neither citrate nor other chelating agents modified the activities of glucosyltransferases. Expression of the lectin could only be achieved by the addition of manganous ion to the growth medium. Chloramphenicol and other metabolic inhibitors prevented synthesis of GBL in cells obtained from manganese-deficient medium and shifted to manganous ion-sufficient medium. The GBL may be a manganoprotein, the manganese of which may be perturbed, but not removed, by chelating agents. During synthesis of the GBL, manganous ion may be required in order for the protein to achieve an active conformation. Citrate or other chelating agents may have promise as anticaries agents.

Full text

PDF
3807

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aranha H., Strachan R. C., Arceneaux J. E., Byers B. R. Effect of trace metals on growth of Streptococcus mutans in a teflon chemostat. Infect Immun. 1982 Feb;35(2):456–460. doi: 10.1128/iai.35.2.456-460.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibald F. Manganese: its acquisition by and function in the lactic acid bacteria. Crit Rev Microbiol. 1986;13(1):63–109. doi: 10.3109/10408418609108735. [DOI] [PubMed] [Google Scholar]
  3. Banas J. A., Russell R. R., Ferretti J. J. Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt. Infect Immun. 1990 Mar;58(3):667–673. doi: 10.1128/iai.58.3.667-673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beighton D. The influence of manganese on carbohydrate metabolism and caries induction by Streptococcus mutans strain Ingbritt. Caries Res. 1982;16(2):189–192. doi: 10.1159/000260596. [DOI] [PubMed] [Google Scholar]
  5. Bowen W. H. The trace element requirements of cariogenic and non-cariogenic streptococci. Arch Oral Biol. 1968 Jun;13(6):713–714. doi: 10.1016/0003-9969(68)90151-9. [DOI] [PubMed] [Google Scholar]
  6. Carlsson J. A levansucrase from Streptococcus mutans. Caries Res. 1970;4(2):97–113. doi: 10.1159/000259632. [DOI] [PubMed] [Google Scholar]
  7. Chludzinski A. M., Germaine G. R., Schachtele C. F. Streptoccus mutans dextransucrase: purification, properties, and requirement for primer dextran. J Dent Res. 1976 Apr;55(Spec No):C75–C86. doi: 10.1177/002203457605500329011. [DOI] [PubMed] [Google Scholar]
  8. Curtiss R., 3rd Genetic analysis of Streptococcus mutans virulence. Curr Top Microbiol Immunol. 1985;118:253–277. doi: 10.1007/978-3-642-70586-1_14. [DOI] [PubMed] [Google Scholar]
  9. Curzon M. E., Crocker D. C. Relationships of trace elements in human tooth enamel to dental caries. Arch Oral Biol. 1978;23(8):647–653. doi: 10.1016/0003-9969(78)90189-9. [DOI] [PubMed] [Google Scholar]
  10. Drake D., Taylor K. G., Bleiweis A. S., Doyle R. J. Specificity of the glucan-binding lectin of Streptococcus cricetus. Infect Immun. 1988 Aug;56(8):1864–1872. doi: 10.1128/iai.56.8.1864-1872.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drake D., Taylor K. G., Doyle R. J. Expression of the glucan-binding lectin of Streptococcus cricetus requires manganous ion. Infect Immun. 1988 Aug;56(8):2205–2207. doi: 10.1128/iai.56.8.2205-2207.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duggal M. S., Chawla H. S., Curzon M. E. A study of the relationship between trace elements in saliva and dental caries in children. Arch Oral Biol. 1991;36(12):881–884. doi: 10.1016/0003-9969(91)90118-e. [DOI] [PubMed] [Google Scholar]
  13. Freedman M. L., Tanzer J. M. Dissociation of plaque formation from glucan-induced agglutination in mutants of Streptococcus mutans. Infect Immun. 1974 Jul;10(1):189–196. doi: 10.1128/iai.10.1.189-196.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibbons R. J., Fitzgerald R. J. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 1969 May;98(2):341–346. doi: 10.1128/jb.98.2.341-346.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibbons R. J., Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968 Oct;13(10):1249–1262. doi: 10.1016/0003-9969(68)90081-2. [DOI] [PubMed] [Google Scholar]
  16. Kuramitsu H. K. Adherence of Streptococcus mutans to dextran synthesized in the presence of extracellular dextransucrase. Infect Immun. 1974 Apr;9(4):764–765. doi: 10.1128/iai.9.4.764-765.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Landale E. C., McCabe M. M. Characterization by affinity electrophoresis of an alpha-1,6-glucan-binding protein from Streptococcus sobrinus. Infect Immun. 1987 Dec;55(12):3011–3016. doi: 10.1128/iai.55.12.3011-3016.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin M. E., Strachan R. C., Aranha H., Evans S. L., Salin M. L., Welch B., Arceneaux J. E., Byers B. R. Oxygen toxicity in Streptococcus mutans: manganese, iron, and superoxide dismutase. J Bacteriol. 1984 Aug;159(2):745–749. doi: 10.1128/jb.159.2.745-749.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCabe M. M., Smith E. E. Relationship between cell-bound dextransucrase and the agglutination of Streptococcus mutans. Infect Immun. 1975 Sep;12(3):512–520. doi: 10.1128/iai.12.3.512-520.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murchison H., Larrimore S., Curtiss R., 3rd Isolation and characterization of Streptococcus mutans mutants defective in adherence and aggregation. Infect Immun. 1981 Dec;34(3):1044–1055. doi: 10.1128/iai.34.3.1044-1055.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Russell R. R., Donald A. C., Douglas C. W. Fructosyltransferase activity of a glucan-binding protein from Streptococcus mutans. J Gen Microbiol. 1983 Oct;129(10):3243–3250. doi: 10.1099/00221287-129-10-3243. [DOI] [PubMed] [Google Scholar]
  23. Russell R. R. Glucan-binding proteins of Streptococcus mutans serotype c. J Gen Microbiol. 1979 May;112(1):197–201. doi: 10.1099/00221287-112-1-197. [DOI] [PubMed] [Google Scholar]
  24. Schilling K. M., Bowen W. H. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect Immun. 1992 Jan;60(1):284–295. doi: 10.1128/iai.60.1.284-295.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strachan R. C., Aranha H., Lodge J. S., Arceneaux J. E., Byers B. R. Teflon chemostat for studies of trace metal metabolism in Streptococcus mutans and other bacteria. Appl Environ Microbiol. 1982 Jan;43(1):257–260. doi: 10.1128/aem.43.1.257-260.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES