Abstract
Growth of Aeromonas hydrophila strains from serotype O:34 at 20 and 37 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharide (LPS), and virulence of the strains tested. Cells grown at 20 degrees C contained, relative to those cultured at 37 degrees C, increased levels of the phospholipid fatty acids hexadecanoate and octadecanoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation. In addition, LPS extracted from cells cultivated at 20 degrees C was smooth, while the LPS extracted from the same cells cultivated at 37 degrees C was rough. Finally, the strains were more virulent for fish and mice when they were grown at 20 degrees C than when they were grown at 37 degrees C and also showed increased different extracellular activities when they were grown at 20 degrees C.
Full text
PDF![4343](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/ec765330d225/iai00034-0405.png)
![4344](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/b45dbfbf9b88/iai00034-0406.png)
![4345](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/776d47edcee8/iai00034-0407.png)
![4346](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/d75358c9eec2/iai00034-0408.png)
![4347](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/471999f9e970/iai00034-0409.png)
![4348](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/7ac2c5469a40/iai00034-0410.png)
![4349](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e8/257471/a879b834d9d8/iai00034-0411.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acker G., Wartenberg K., Knapp W. Zuckerzusammensetzung des Lipopolysaccharids und Feinstruktur der äusseren Membran (Zellwand) bei Yersinia enterocolitica. Zentralbl Bakteriol A. 1980;247(2):229–240. [PubMed] [Google Scholar]
- Ames G. F., Spudich E. N., Nikaido H. Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J Bacteriol. 1974 Feb;117(2):406–416. doi: 10.1128/jb.117.2.406-416.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asao T., Kozaki S., Kato K., Kinoshita Y., Otsu K., Uemura T., Sakaguchi G. Purification and characterization of an Aeromonas hydrophila hemolysin. J Clin Microbiol. 1986 Aug;24(2):228–232. doi: 10.1128/jcm.24.2.228-232.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco J., Blanco M., González E. A., Alonso M. P., Garabal J. I. Comparative evaluation of three tests for the detection of Escherichia coli cytotoxic necrotizing factors (CNF1 and CNF2) using filtrates of cultures treated with mitomycin C. FEMS Microbiol Lett. 1990 Jun 1;57(3):311–316. doi: 10.1016/0378-1097(90)90086-6. [DOI] [PubMed] [Google Scholar]
- Darveau R. P., Charnetzky W. T., Hurlbert R. F., Hancock R. E. Effects of growth temperature, 47-megadalton plasmid, and calcium deficiency on the outer membrane protein porin and lipopolysaccharide composition of Yersinia pestis EV76. Infect Immun. 1983 Dec;42(3):1092–1101. doi: 10.1128/iai.42.3.1092-1101.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooley J. S., Lallier R., Shaw D. H., Trust T. J. Electrophoretic and immunochemical analyses of the lipopolysaccharides from various strains of Aeromonas hydrophila. J Bacteriol. 1985 Oct;164(1):263–269. doi: 10.1128/jb.164.1.263-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freij B. J. Aeromonas: biology of the organism and diseases in children. Pediatr Infect Dis. 1984 Mar-Apr;3(2):164–175. [PubMed] [Google Scholar]
- Gill C. O. Effect of growth temperature on the lipids of Pseudomonas fluorescens. J Gen Microbiol. 1975 Aug;89(2):293–298. doi: 10.1099/00221287-89-2-293. [DOI] [PubMed] [Google Scholar]
- Gill C. O., Suisted J. R. The effects of temperature and growth rate on the proportion of unsaturated fatty acids in bacterial lipids. J Gen Microbiol. 1978 Jan;104(1):31–36. doi: 10.1099/00221287-104-1-31. [DOI] [PubMed] [Google Scholar]
- KATES M., HAGEN P. O. INFLUENCE OF TEMPERATURE ON FATTY ACID COMPOSITION OF PSYCHROPHILIC AND MESOPHILIC SERRATIA SPECIES. Can J Biochem. 1964 Apr;42:481–488. doi: 10.1139/o64-055. [DOI] [PubMed] [Google Scholar]
- Kropinski A. M., Kuzio J., Angus B. L., Hancock R. E. Chemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1982 Feb;21(2):310–319. doi: 10.1128/aac.21.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kropinski A. M., Lewis V., Berry D. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. J Bacteriol. 1987 May;169(5):1960–1966. doi: 10.1128/jb.169.5.1960-1966.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lallier R., Bernard F., Lalonde G. Difference in the extracellular products of two strains of Aeromonas hydrophila virulent and weakly virulent for fish. Can J Microbiol. 1984 Jul;30(7):900–904. doi: 10.1139/m84-141. [DOI] [PubMed] [Google Scholar]
- Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnell M., Wright A. Variation in the structure and bacteriophage-inactivating capacity of Salmonella anatum lipopolysaccharide as a function of growth temperature. J Bacteriol. 1979 Feb;137(2):746–751. doi: 10.1128/jb.137.2.746-751.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McElhaney R. N., Souza K. A. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus. Biochim Biophys Acta. 1976 Sep 7;443(3):348–359. doi: 10.1016/0005-2736(76)90455-7. [DOI] [PubMed] [Google Scholar]
- Merino S., Benedí V. J., Tomás J. M. Aeromonas hydrophila strains with moderate virulence. Microbios. 1989;59(240-241):165–173. [PubMed] [Google Scholar]
- Merino S., Camprubi S., Tomás J. M. Identification of the cell surface receptor for bacteriophage 18 from Aeromonas hydrophila. Res Microbiol. 1990 Feb;141(2):173–180. doi: 10.1016/0923-2508(90)90026-m. [DOI] [PubMed] [Google Scholar]
- Merino S., Camprubi S., Tomás J. M. Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiol Lett. 1990 Mar 15;56(3):239–244. doi: 10.1016/s0378-1097(05)80047-3. [DOI] [PubMed] [Google Scholar]
- Merino S., Camprubí S., Tomás J. M. Characterization of an O-antigen bacteriophage from Aeromonas hydrophila. Can J Microbiol. 1992 Mar;38(3):235–240. doi: 10.1139/m92-040. [DOI] [PubMed] [Google Scholar]
- Merino S., Camprubí S., Tomás J. M. The role of lipopolysaccharide in complement-killing of Aeromonas hydrophila strains of serotype O:34. J Gen Microbiol. 1991 Jul;137(7):1583–1590. doi: 10.1099/00221287-137-7-1583. [DOI] [PubMed] [Google Scholar]
- Paniagua C., Rivero O., Anguita J., Naharro G. Pathogenicity factors and virulence for rainbow trout (Salmo gairdneri) of motile Aeromonas spp. isolated from a river. J Clin Microbiol. 1990 Feb;28(2):350–355. doi: 10.1128/jcm.28.2.350-355.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole K., Braun V. Influence of growth temperature and lipopolysaccharide on hemolytic activity of Serratia marcescens. J Bacteriol. 1988 Nov;170(11):5146–5152. doi: 10.1128/jb.170.11.5146-5152.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottem S., Markowitz O., Razin S. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis. Eur J Biochem. 1978 Apr 17;85(2):445–450. doi: 10.1111/j.1432-1033.1978.tb12258.x. [DOI] [PubMed] [Google Scholar]
- Thomas L. V., Gross R. J., Cheasty T., Rowe B. Extended serogrouping scheme for motile, mesophilic Aeromonas species. J Clin Microbiol. 1990 May;28(5):980–984. doi: 10.1128/jcm.28.5.980-984.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomás J. M., Jofre J. T. Lipopolysaccharide-specific bacteriophage for Klebsiella pneumoniae C3. J Bacteriol. 1985 Jun;162(3):1276–1279. doi: 10.1128/jb.162.3.1276-1279.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Van Alphen L., Lugtenberg B., Rietschel E. T., Mombers C. Architecture of the outer membrane of Escherichia coli K12. Phase transitions of the bacteriophage K3 receptor complex. Eur J Biochem. 1979 Nov;101(2):571–579. doi: 10.1111/j.1432-1033.1979.tb19752.x. [DOI] [PubMed] [Google Scholar]
- Wartenberg K., Knapp W., Ahamed N. M., Widemann C., Mayer H. Temperature-dependent changes in the sugar and fatty acid composition of lipopolysaccharides from Yersinia enterocolitica strains. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Feb;253(4):523–530. [PubMed] [Google Scholar]
- Wollenweber H. W., Schlecht S., Lüderitz O., Rietschel E. T. Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem. 1983 Jan 17;130(1):167–171. doi: 10.1111/j.1432-1033.1983.tb07132.x. [DOI] [PubMed] [Google Scholar]