Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1992 Jan;60(1):302–307. doi: 10.1128/iai.60.1.302-307.1992

Restoration of exocytosis occurs after inactivation of intracellular tetanus toxin.

F Bartels 1, H Bigalke 1
PMCID: PMC257536  PMID: 1729192

Abstract

Tetanus toxin blocks carbachol-stimulated release of noradrenaline from bovine adrenal chromaffin cells in culture, provided it can gain access to the cells. This can be achieved by electropermeabilization of the plasma membrane or by enriching the membrane with exogenous gangliosides which serve as carriers of the toxin. The inhibition of noradrenaline release persists for at least 6 days, even in the presence of specific anti-tetanus toxin antibodies in the culture medium. However, the block is preventable, for the most part, when antibodies enter chromaffin cells during electropermeabilization, before the uptake of the toxin is facilitated by inserting exogenous gangliosides into the plasma membrane 2 days later. This indicates that the antibodies pass into the cells through the physically induced pores and that these intracellular antibodies neutralize incoming tetanus toxin. If, on the other hand, exocytosis has been inhibited by tetanus toxin, it will recover within 3 days, provided specific anti-tetanus toxin antibodies are introduced into the cells by electropermeabilization. The recovery is not linked to a specific route of entry of the toxin. It is concluded that the restoration of noradrenaline release requires not only the intracellular neutralization of tetanus toxin but also the reconstitution of the as yet unknown target molecule of the toxin.

Full text

PDF
302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnert-Hilger G., Bader M. F., Bhakdi S., Gratzl M. Introduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC12) by permeabilization with streptolysin O: inhibitory effect of tetanus toxin on catecholamine secretion. J Neurochem. 1989 Jun;52(6):1751–1758. doi: 10.1111/j.1471-4159.1989.tb07253.x. [DOI] [PubMed] [Google Scholar]
  2. Ahnert-Hilger G., Weller U., Dauzenroth M. E., Habermann E., Gratzl M. The tetanus toxin light chain inhibits exocytosis. FEBS Lett. 1989 Jan 2;242(2):245–248. doi: 10.1016/0014-5793(89)80478-8. [DOI] [PubMed] [Google Scholar]
  3. Bergey G. K., Bigalke H., Nelson P. G. Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action for tetanus toxin. J Neurophysiol. 1987 Jan;57(1):121–131. doi: 10.1152/jn.1987.57.1.121. [DOI] [PubMed] [Google Scholar]
  4. Bergey G. K., MacDonald R. L., Habig W. H., Hardegree M. C., Nelson P. G. Tetanus toxin: convulsant action on mouse spinal cord neurons in culture. J Neurosci. 1983 Nov;3(11):2310–2323. doi: 10.1523/JNEUROSCI.03-11-02310.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bigalke H., Müller H., Dreyer F. Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon. 1986;24(11-12):1065–1074. doi: 10.1016/0041-0101(86)90133-9. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., De Groat W. C. Tetanus toxin and spinal inhibition. Brain Res. 1968 Aug 26;10(2):208–212. doi: 10.1016/0006-8993(68)90123-6. [DOI] [PubMed] [Google Scholar]
  7. Erdmann G., Hanauske A., Wellhöner H. H. Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracisternally injected anti-tetanus toxoid F(ab')2 fragments. Brain Res. 1981 May 4;211(2):367–377. doi: 10.1016/0006-8993(81)90708-3. [DOI] [PubMed] [Google Scholar]
  8. Habermann E., Müller H., Hudel M. Tetanus toxin and botulinum A and C neurotoxins inhibit noradrenaline release from cultured mouse brain. J Neurochem. 1988 Aug;51(2):522–527. doi: 10.1111/j.1471-4159.1988.tb01069.x. [DOI] [PubMed] [Google Scholar]
  9. Habig W. H., Bigalke H., Bergey G. K., Neale E. A., Hardegree M. C., Nelson P. G. Tetanus toxin in dissociated spinal cord cultures: long-term characterization of form and action. J Neurochem. 1986 Sep;47(3):930–937. doi: 10.1111/j.1471-4159.1986.tb00700.x. [DOI] [PubMed] [Google Scholar]
  10. Lambert H., Pankov R., Gauthier J., Hancock R. Electroporation-mediated uptake of proteins into mammalian cells. Biochem Cell Biol. 1990 Apr;68(4):729–734. doi: 10.1139/o90-105. [DOI] [PubMed] [Google Scholar]
  11. Marxen P., Ahnert-Hilger G., Wellhöner H. H., Bigalke H. Tetanus antitoxin binds to intracellular tetanus toxin in permeabilized chromaffin cells without restoring Ca2(+)-induced exocytosis. Toxicon. 1990;28(9):1077–1082. doi: 10.1016/0041-0101(90)90146-x. [DOI] [PubMed] [Google Scholar]
  12. Marxen P., Bigalke H. Tetanus and botulinum A toxins inhibit stimulated F-actin rearrangement in chromaffin cells. Neuroreport. 1991 Jan;2(1):33–36. doi: 10.1097/00001756-199101000-00008. [DOI] [PubMed] [Google Scholar]
  13. Marxen P., Bigalke H. Tetanus toxin: inhibitory action in chromaffin cells is initiated by specified types of gangliosides and promoted in low ionic strength solution. Neurosci Lett. 1989 Dec 15;107(1-3):261–266. doi: 10.1016/0304-3940(89)90828-8. [DOI] [PubMed] [Google Scholar]
  14. Marxen P., Fuhrmann U., Bigalke H. Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon. 1989;27(8):849–859. doi: 10.1016/0041-0101(89)90097-4. [DOI] [PubMed] [Google Scholar]
  15. Olsen K. M., Hiller F. C. Management of tetanus. Clin Pharm. 1987 Jul;6(7):570–574. [PubMed] [Google Scholar]
  16. Penner R., Neher E., Dreyer F. Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature. 1986 Nov 6;324(6092):76–78. doi: 10.1038/324076a0. [DOI] [PubMed] [Google Scholar]
  17. Smith J. W. Intracerebral antitoxin in experimental tetanus. Br J Exp Pathol. 1966 Feb;47(1):17–24. [PMC free article] [PubMed] [Google Scholar]
  18. Spaun J., Lyng J. Replacement of the international standard for tetanus antitoxin and the use of the standard in the flocculation test. Bull World Health Organ. 1970;42(4):523–534. [PMC free article] [PubMed] [Google Scholar]
  19. Wellhöner H. H., Bigalke H., Borcholte T., Erdmann G., Eschenhagen T., Jung K. H., Marxen P., Peukert U., Neville D. M., Jr, Srinivasachar K. Uptake of antitetanus F(ab')2 fragments into eukaryotic cells. J Physiol (Paris) 1990;84(3):206–210. [PubMed] [Google Scholar]
  20. Wellhöner H. H., Neville D. M., Jr, Srinivasachar K., Erdmann G. Uptake and concentration of bioactive macromolecules by K562 cells via the transferrin cycle utilizing an acid-labile transferrin conjugate. J Biol Chem. 1991 Mar 5;266(7):4309–4314. [PubMed] [Google Scholar]
  21. Wellhöner N. H. Tetanus neurotoxin. Rev Physiol Biochem Pharmacol. 1982;93:1–68. doi: 10.1007/BFb0032668. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES