Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1991 Jan;59(1):222–228. doi: 10.1128/iai.59.1.222-228.1991

PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type.

L S McDaniel 1, J S Sheffield 1, P Delucchi 1, D E Briles 1
PMCID: PMC257730  PMID: 1987036

Abstract

Monoclonal antibodies against pneumococcal surface protein A (PspA) have been shown to protect mice from fatal pneumococcal infection. PspA is highly variable serologically, raising the possibility that PspA from one strain might not be able to elicit protective responses against strains which possess serologically different PspA. We have prepared a lambda gt11 library of pneumococcal genomic DNA and identified a clone expressing PspA. The recombinant PspA in this phage lysate elicited protection against pneumococcal infections with three strains of two different capsular serotypes. This finding demonstrated that PspA could elicit a protective response in the absence of other pneumococcal antigens. The observed protection was probably antibody mediated because it could be passively transferred with immune sera. Lambda lysates producing pneumococcal proteins other than PspA failed to elicit protection against fatal pneumococcal infection.

Full text

PDF
222

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Smith D. H., Ingram D. L., Wilkins J., Wehrle P. F., Howie V. M. Antibody of polyribophate of Haemophilus influenzae type b in infants and children: effect of immunization with polyribophosphate. J Infect Dis. 1977 Aug;136 (Suppl):S57–S62. doi: 10.1093/infdis/136.supplement.s57. [DOI] [PubMed] [Google Scholar]
  2. Bolan G., Broome C. V., Facklam R. R., Plikaytis B. D., Fraser D. W., Schlech W. F., 3rd Pneumococcal vaccine efficacy in selected populations in the United States. Ann Intern Med. 1986 Jan;104(1):1–6. doi: 10.7326/0003-4819-104-1-1. [DOI] [PubMed] [Google Scholar]
  3. Briles D. E., Horowitz J., McDaniel L. S., Benjamin W. H., Jr, Claflin J. L., Booker C. L., Scott G., Forman C. Genetic control of the susceptibility to pneumococcal infection. Curr Top Microbiol Immunol. 1986;124:103–120. doi: 10.1007/978-3-642-70986-9_7. [DOI] [PubMed] [Google Scholar]
  4. Briles D. E., Kearney J. F. Antiidiotypic antibodies. Methods Enzymol. 1985;116:174–189. doi: 10.1016/s0076-6879(85)16012-x. [DOI] [PubMed] [Google Scholar]
  5. Briles D. E., Nahm M., Schroer K., Davie J., Baker P., Kearney J., Barletta R. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J Exp Med. 1981 Mar 1;153(3):694–705. doi: 10.1084/jem.153.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowan M. J., Ammann A. J., Wara D. W., Howie V. M., Schultz L., Doyle N., Kaplan M. Pneumococcal polysaccharide immunization in infants and children. Pediatrics. 1978 Nov;62(5):721–727. [PubMed] [Google Scholar]
  7. Crain M. J., Waltman W. D., 2nd, Turner J. S., Yother J., Talkington D. F., McDaniel L. S., Gray B. M., Briles D. E. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect Immun. 1990 Oct;58(10):3293–3299. doi: 10.1128/iai.58.10.3293-3299.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray B. M., Dillon H. C., Jr, Briles D. E. Epidemiological studies of Streptococcus pneumoniae in infants: development of antibody to phosphocholine. J Clin Microbiol. 1983 Nov;18(5):1102–1107. doi: 10.1128/jcm.18.5.1102-1107.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  10. Lock R. A., Paton J. C., Hansman D. Comparative efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microb Pathog. 1988 Dec;5(6):461–467. doi: 10.1016/0882-4010(88)90007-1. [DOI] [PubMed] [Google Scholar]
  11. McDaniel L. S., Benjamin W. H., Jr, Forman C., Briles D. E. Blood clearance by anti-phosphocholine antibodies as a mechanism of protection in experimental pneumococcal bacteremia. J Immunol. 1984 Dec;133(6):3308–3312. [PubMed] [Google Scholar]
  12. McDaniel L. S., Briles D. E. A pneumococcal surface protein (PspB) that exhibits the same protease sensitivity as streptococcal R antigen. Infect Immun. 1988 Nov;56(11):3001–3003. doi: 10.1128/iai.56.11.3001-3003.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McDaniel L. S., Scott G., Kearney J. F., Briles D. E. Monoclonal antibodies against protease-sensitive pneumococcal antigens can protect mice from fatal infection with Streptococcus pneumoniae. J Exp Med. 1984 Aug 1;160(2):386–397. doi: 10.1084/jem.160.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McDaniel L. S., Waltman W. D., 2nd, Gray B., Briles D. E. A protective monoclonal antibody that reacts with a novel antigen of pneumococcal teichoic acid. Microb Pathog. 1987 Oct;3(4):249–260. doi: 10.1016/0882-4010(87)90058-1. [DOI] [PubMed] [Google Scholar]
  15. McDaniel L. S., Yother J., Vijayakumar M., McGarry L., Guild W. R., Briles D. E. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J Exp Med. 1987 Feb 1;165(2):381–394. doi: 10.1084/jem.165.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morris S. L., Rouse D. A., Hussong D., Chaparas S. D. Isolation and characterization of recombinant lambda gt11 bacteriophages expressing four different Mycobacterium intracellulare antigens. Infect Immun. 1990 Jan;58(1):17–20. doi: 10.1128/iai.58.1.17-20.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paton J. C., Lock R. A., Hansman D. J. Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun. 1983 May;40(2):548–552. doi: 10.1128/iai.40.2.548-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shoemaker N. B., Guild W. R. Destruction of low efficiency markers is a slow process occurring at a heteroduplex stage of transformation. Mol Gen Genet. 1974;128(4):283–290. doi: 10.1007/BF00268516. [DOI] [PubMed] [Google Scholar]
  19. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  20. Wicker L. S., Scher I. X-linked immune deficiency (xid) of CBA/N mice. Curr Top Microbiol Immunol. 1986;124:87–101. doi: 10.1007/978-3-642-70986-9_6. [DOI] [PubMed] [Google Scholar]
  21. Young D. B., Kent L., Young R. A. Screening of a recombinant mycobacterial DNA library with polyclonal antiserum and molecular weight analysis of expressed antigens. Infect Immun. 1987 Jun;55(6):1421–1425. doi: 10.1128/iai.55.6.1421-1425.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES