Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1991 Feb;59(2):655–664. doi: 10.1128/iai.59.2.655-664.1991

Inhibition of bactericidal and bacteriolytic activities of poly-D-lysine and lysozyme by chitotriose and ferric iron.

G R Tompkins 1, M M O'Neill 1, T G Cafarella 1, G R Germaine 1
PMCID: PMC257807  PMID: 1987082

Abstract

In a previous report from this laboratory (N. J. Laible and G. R. Germaine, Infect. Immun. 48:720-728, 1985), evidence was presented to suggest that the bactericidal actions of both reduced (i.e., muramidase-inactive) human placental lysozyme and the synthetic cationic homopolymer poly-D-lysine involved the activation of a bacterial endogenous activity that was inhibitable by N,N',N"-triacetylchitotriose (chitotriose). In the present investigation however, we found that the bactericidal and bacteriolytic action of poly-D-lysine could be prevented only by some commercially available chitotriose preparations and not by others. Analysis by physical and chemical methods failed to distinguish protective chitotriose (CTa) and nonprotective chitotriose (CTi) preparations. CTi and CTa preparations displayed equal capacities to competitively inhibit binding of [3H]chitotriose by immobilized lysozyme and were indistinguishable in their abilities to block the lytic activity of lysozyme against Micrococcus lysodeikticus cells. Elemental analysis revealed significantly higher levels of phosphorus, calcium, iron, sodium, manganese, and copper in CTa. Removal of metals from CTa by chelate chromatography completely abolished the poly-D-lysine-protective capacity. Of the metals detected, only ferric iron (5 to 10 microM) mimicked the protective action of CTa. A Fe(III) concentration of 50 microM was required to inhibit lysozyme (5 micrograms/ml). Both Fe(III) and CTa (but not CTi) quantitatively blocked the labeling of poly-D-lysine by fluorescamine, suggesting that the primary amino groups of the lysine residues participate in iron binding. Thus, it appears that the poly-D-lysine-protective capacity of certain chitotriose preparations was due not to the chitotriose itself but to contaminating metal ions which interact directly with the polycationic agent. In contrast, Fe(III) cannot account for inhibition of either the bactericidal or bacteriolytic activity of lysozyme by chitotriose.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., De Duve C., Masson P. L., Heremans J. F. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med. 1970 Mar 1;131(3):559–570. doi: 10.1084/jem.131.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bierbaum G., Sahl H. G. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol. 1987 Dec;169(12):5452–5458. doi: 10.1128/jb.169.12.5452-5458.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumberg K., Liniere F., Pustilnik L., Bush C. A. Fractionation of oligosaccharides containing N-acetyl amino sugars by reverse-phase high-pressure liquid chromatography. Anal Biochem. 1982 Jan 15;119(2):407–412. doi: 10.1016/0003-2697(82)90605-4. [DOI] [PubMed] [Google Scholar]
  4. Bowen W. H. Defense mechanisms in the mouth and their possible role in the prevention of dental caries: a review. J Oral Pathol. 1974;3(6):266–278. doi: 10.1111/j.1600-0714.1974.tb01721.x. [DOI] [PubMed] [Google Scholar]
  5. Carter P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem. 1971 Apr;40(2):450–458. doi: 10.1016/0003-2697(71)90405-2. [DOI] [PubMed] [Google Scholar]
  6. Germaine G. R., Tellefson L. M. Potential role of lysozyme in bactericidal activity of in vitro-acquired salivary pellicle against Streptococcus faecium 9790. Infect Immun. 1986 Dec;54(3):846–854. doi: 10.1128/iai.54.3.846-854.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons R. J., de Stoppelaar J. D., Harden L. Lysozyme insensitivity of bacteria indigenous to the oral cavity of man. J Dent Res. 1966 May-Jun;45(3):877–881. doi: 10.1177/00220345660450036201. [DOI] [PubMed] [Google Scholar]
  8. Ginsburg I. The biochemistry of bacteriolysis: paradoxes, facts and myths. Microbiol Sci. 1988 May;5(5):137–142. [PubMed] [Google Scholar]
  9. Gladstone G. P., Walton E. Effect of iron on the bactericidal proteins from rabbit polymorphonuclear leukocytes. Nature. 1970 Aug 22;227(5260):849–851. doi: 10.1038/227849a0. [DOI] [PubMed] [Google Scholar]
  10. Iacono V. J., MacKay B. J., DiRienzo S., Pollock J. J. Selective antibacterial properties of lysozyme for oral microorganisms. Infect Immun. 1980 Aug;29(2):623–632. doi: 10.1128/iai.29.2.623-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iwamoto Y., Watanabe T., Tsunemitsu A., Fukui Z., Moriyama T. Lysis of streptococci by lysozyme from human parotid saliva and sodium lauryl sulfate. J Dent Res. 1971 Nov-Dec;50(6):1688–1688. doi: 10.1177/00220345710500066201. [DOI] [PubMed] [Google Scholar]
  12. Lahav M., Ginsburg I. Effect of leukocyte hydrolases on bacteria. X. The role played by leukocyte factors, cationic polyelectrolytes, and by membrane-damaging agents in the lysis of Staphylococcus aureus: relation to chronic inflammatory processes. Inflammation. 1977 Jun;2(2):165–177. doi: 10.1007/BF00918678. [DOI] [PubMed] [Google Scholar]
  13. Laible N. J., Germaine G. R. Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun. 1985 Jun;48(3):720–728. doi: 10.1128/iai.48.3.720-728.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leffell M. S., Spitznagel J. K. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun. 1972 Nov;6(5):761–765. doi: 10.1128/iai.6.5.761-765.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacKay B. J., Iacono V. J., Zuckerman J. M., Osserman E. F., Pollock J. J. Quantitative recovery, selective removal and one-step purification of human parotid and leukemic lysozymes by immunoadsorption. Eur J Biochem. 1982 Dec;129(1):93–98. doi: 10.1111/j.1432-1033.1982.tb07025.x. [DOI] [PubMed] [Google Scholar]
  16. MacKay B. J., Pollock J. J., Iacono V. J., Baum B. J. Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect Immun. 1984 Jun;44(3):688–694. doi: 10.1128/iai.44.3.688-694.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Metcalf R. H., Deibel R. H. Effect of lysozyme on enterococcal viability in low ionic environments. J Bacteriol. 1973 Jan;113(1):278–286. doi: 10.1128/jb.113.1.278-286.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miyano H., Toyo'oka T., Imai K., Nakajima T. Influences of metal ions on the reaction of amino and imino acids with fluorogenic reagents. Anal Biochem. 1985 Oct;150(1):125–130. doi: 10.1016/0003-2697(85)90450-6. [DOI] [PubMed] [Google Scholar]
  19. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  20. Palumbo M., Cosani A., Terbojevich M., Peggion E. Metal complexes of poly(alpha-amino acids). Optical rotatory properties of copper(II) complexes of poly-L-lysine, poly-L-ornithine, and poly-L-diaminobutyric acid. J Am Chem Soc. 1977 Feb 2;99(3):939–991. doi: 10.1021/ja00445a044. [DOI] [PubMed] [Google Scholar]
  21. Rudney J. D. Relationships between human parotid saliva lysozyme lactoferrin, salivary peroxidase and secretory immunoglobulin A in a large sample population. Arch Oral Biol. 1989;34(7):499–506. doi: 10.1016/0003-9969(89)90086-1. [DOI] [PubMed] [Google Scholar]
  22. Sahl H. G. Bactericidal cationic peptides involved in bacterial antagonism and host defence. Microbiol Sci. 1985 Jul;2(7):212–217. [PubMed] [Google Scholar]
  23. Sawyer J. G., Martin N. L., Hancock R. E. Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun. 1988 Mar;56(3):693–698. doi: 10.1128/iai.56.3.693-698.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spitznagel J. K. Nonoxidative antimicrobial reactions of leukocytes. Contemp Top Immunobiol. 1984;14:283–343. doi: 10.1007/978-1-4757-4862-8_10. [DOI] [PubMed] [Google Scholar]
  25. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  26. WENZEL M., LENK H. P., SCHUETTE E. [H-3] and its splitting by lysozyme]. Hoppe Seylers Z Physiol Chem. 1961 Dec 29;327:13–20. [PubMed] [Google Scholar]
  27. Wecke J., Lahav M., Ginsburg I., Giesbrecht P. Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol. 1982 Mar;131(2):116–123. doi: 10.1007/BF01053992. [DOI] [PubMed] [Google Scholar]
  28. Weinberg E. D. Iron and susceptibility to infectious disease. Science. 1974 May 31;184(4140):952–956. doi: 10.1126/science.184.4140.952. [DOI] [PubMed] [Google Scholar]
  29. Zeya H. I., Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966 Feb;91(2):755–762. doi: 10.1128/jb.91.2.755-762.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES