Skip to main content
The Yale Journal of Biology and Medicine logoLink to The Yale Journal of Biology and Medicine
. 1999 Nov-Dec;72(6):393–408.

Case studies in cholera: lessons in medical history and science.

S M Kavic 1, E J Frehm 1, A S Segal 1
PMCID: PMC2579035  PMID: 11138935

Abstract

Cholera, a prototypical secretory diarrheal disease, is an ancient scourge that has both wrought great suffering and taught many valuable lessons, from basic sanitation to molecular signal transduction. Victims experience the voluminous loss of bicarbonate-rich isotonic saline at a rate that may lead to hypovolemic shock, metabolic acidosis, and death within afew hours. Intravenous solution therapy as we know it was first developed in an attempt to provide life-saving volume replacement for cholera patients. Breakthroughs in epithelial membrane transport physiology, such as the discovery of sugar and salt cotransport, have paved the way for oral replacement therapy in areas of the world where intravenous replacement is not readily available. In addition, the discovery of the cholera toxin has yielded vital information about toxigenic infectious diseases, providing a framework in which to study fundamental elements of intracellular signal transduction pathways, such as G-proteins. Cholera may even shed light on the evolution and pathophysiology of cystic fibrosis, the most commonly inherited disease among Caucasians. The goal of this paper is to review, using case studies, some of the lessons learned from cholera throughout the ages, acknowledging those pioneers whose seminal work led to our understanding of many basic concepts in medical epidemiology, microbiology, physiology, and therapeutics.

Full text

PDF
393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 1954 Feb 6;1(4857):290–294. doi: 10.1136/bmj.1.4857.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abood M. E., Hurley J. B., Pappone M. C., Bourne H. R., Stryer L. Functional homology between signal-coupling proteins. Cholera toxin inactivates the GTPase activity of transducin. J Biol Chem. 1982 Sep 25;257(18):10540–10543. [PubMed] [Google Scholar]
  3. Alam N. H., Majumder R. N., Fuchs G. J. Efficacy and safety of oral rehydration solution with reduced osmolarity in adults with cholera: a randomised double-blind clinical trial. CHOICE study group. Lancet. 1999 Jul 24;354(9175):296–299. doi: 10.1016/s0140-6736(98)09332-5. [DOI] [PubMed] [Google Scholar]
  4. BENYAJATI C., KEOPLUG M., BEISEL W. R., GANGAROSA E. J., SPRINZ H., SITPRIJA V. Acute renal failure in Asiatic cholera: clinicopathologic correlations with acute tubular necrosis and hypokalemic nephropathy. Ann Intern Med. 1960 May;52:960–975. doi: 10.7326/0003-4819-52-5-960. [DOI] [PubMed] [Google Scholar]
  5. Baxter P. S., Goldhill J., Hardcastle J., Hardcastle P. T., Taylor C. J. Accounting for cystic fibrosis. Nature. 1988 Sep 15;335(6187):211–211. doi: 10.1038/335211a0. [DOI] [PubMed] [Google Scholar]
  6. Bennett V., O'Keefe E., Cuatrecasaş P. Mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor-adenylate cyclase interactions. Proc Natl Acad Sci U S A. 1975 Jan;72(1):33–37. doi: 10.1073/pnas.72.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blake P. A., Allegra D. T., Snyder J. D., Barrett T. J., McFarland L., Caraway C. T., Feeley J. C., Craig J. P., Lee J. V., Puhr N. D. Cholera--a possible endemic focus in the United States. N Engl J Med. 1980 Feb 7;302(6):305–309. doi: 10.1056/NEJM198002073020601. [DOI] [PubMed] [Google Scholar]
  8. Brandt D. R., Ross E. M. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. J Biol Chem. 1985 Jan 10;260(1):266–272. [PubMed] [Google Scholar]
  9. Burns D. L., Moss J., Vaughan M. Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase. J Biol Chem. 1983 Jan 25;258(2):1116–1120. [PubMed] [Google Scholar]
  10. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  11. CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
  12. Casey P. J., Gilman A. G. G protein involvement in receptor-effector coupling. J Biol Chem. 1988 Feb 25;263(6):2577–2580. [PubMed] [Google Scholar]
  13. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cassel D., Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3307–3311. doi: 10.1073/pnas.74.8.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cassuto J., Fahrenkrug J., Jodal M., Tuttle R., Lundgren O. Release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut. 1981 Nov;22(11):958–963. doi: 10.1136/gut.22.11.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cassuto J., Jodal M., Tuttle R., Lundgren O. On the role of intramural nerves in the pathogenesis of cholera toxin-induced intestinal secretion. Scand J Gastroenterol. 1981 Apr;16(3):377–384. doi: 10.3109/00365528109181984. [DOI] [PubMed] [Google Scholar]
  17. Cosnett J. E. The origins of intravenous fluid therapy. Lancet. 1989 Apr 8;1(8641):768–771. doi: 10.1016/s0140-6736(89)92583-x. [DOI] [PubMed] [Google Scholar]
  18. DE S. N. Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature. 1959 May 30;183(4674):1533–1534. doi: 10.1038/1831533a0. [DOI] [PubMed] [Google Scholar]
  19. Enomoto K., Gill D. M. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. J Biol Chem. 1980 Feb 25;255(4):1252–1258. [PubMed] [Google Scholar]
  20. Fasano A., Baudry B., Pumplin D. W., Wasserman S. S., Tall B. D., Ketley J. M., Kaper J. B. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5242–5246. doi: 10.1073/pnas.88.12.5242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fasano A., Fiorentini C., Donelli G., Uzzau S., Kaper J. B., Margaretten K., Ding X., Guandalini S., Comstock L., Goldblum S. E. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest. 1995 Aug;96(2):710–720. doi: 10.1172/JCI118114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  23. Francis M. L., Okazaki I., Moss J., Kurosky A., Pecanha L. M., Mond J. J. cAMP-independent effects of cholera toxin on B cell activation. III. Cholera toxin A subunit-mediated ADP-ribosylation acts synergistically with ionomycin or IL-4 to induce B cell proliferation. J Immunol. 1995 May 15;154(10):4956–4964. [PubMed] [Google Scholar]
  24. Gabriel S. E., Brigman K. N., Koller B. H., Boucher R. C., Stutts M. J. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science. 1994 Oct 7;266(5182):107–109. doi: 10.1126/science.7524148. [DOI] [PubMed] [Google Scholar]
  25. Gadsby D. C., Nagel G., Hwang T. C. The CFTR chloride channel of mammalian heart. Annu Rev Physiol. 1995;57:387–416. doi: 10.1146/annurev.ph.57.030195.002131. [DOI] [PubMed] [Google Scholar]
  26. Gill D. M., Rappaport R. S. Origin of the enzymatically active A1 fragment of cholera toxin. J Infect Dis. 1979 Jun;139(6):674–680. doi: 10.1093/infdis/139.6.674. [DOI] [PubMed] [Google Scholar]
  27. Gill D. M. The arrangement of subunits in cholera toxin. Biochemistry. 1976 Mar 23;15(6):1242–1248. doi: 10.1021/bi00651a011. [DOI] [PubMed] [Google Scholar]
  28. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  29. Greenough W. B., 3rd Oral rehydration therapy. Lancet. 1995 Jun 17;345(8964):1568–1569. [PubMed] [Google Scholar]
  30. Hallett W. Y., Knudson A. G., Jr, Massey F. J., Jr Absence of detrimental effect of the carrier state for the cystic fibrosis gene. Am Rev Respir Dis. 1965 Nov;92(5):714–724. doi: 10.1164/arrd.1965.92.5.714. [DOI] [PubMed] [Google Scholar]
  31. Hansson G. C. Cystic fibrosis and chloride-secreting diarrhoea. Nature. 1988 Jun 23;333(6175):711–711. doi: 10.1038/333711c0. [DOI] [PubMed] [Google Scholar]
  32. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  33. Hwang T. C., Lu L., Zeitlin P. L., Gruenert D. C., Huganir R., Guggino W. B. Cl- channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science. 1989 Jun 16;244(4910):1351–1353. doi: 10.1126/science.2472005. [DOI] [PubMed] [Google Scholar]
  34. Jiang M. M., Kirchgessner A., Gershon M. D., Surprenant A. Cholera toxin-sensitive neurons in guinea pig submucosal plexus. Am J Physiol. 1993 Jan;264(1 Pt 1):G86–G94. doi: 10.1152/ajpgi.1993.264.1.G86. [DOI] [PubMed] [Google Scholar]
  35. Jorde L. B., Lathrop G. M. A test of the heterozygote-advantage hypothesis in cystic fibrosis carriers. Am J Hum Genet. 1988 Jun;42(6):808–815. [PMC free article] [PubMed] [Google Scholar]
  36. Kahn R. A., Gilman A. G. ADP-ribosylation of Gs promotes the dissociation of its alpha and beta subunits. J Biol Chem. 1984 May 25;259(10):6235–6240. [PubMed] [Google Scholar]
  37. Kahn R. A., Gilman A. G. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem. 1984 May 25;259(10):6228–6234. [PubMed] [Google Scholar]
  38. Kahn R. A., Gilman A. G. The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem. 1986 Jun 15;261(17):7906–7911. [PubMed] [Google Scholar]
  39. Kaper J. B., Morris J. G., Jr, Levine M. M. Cholera. Clin Microbiol Rev. 1995 Jan;8(1):48–86. doi: 10.1128/cmr.8.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Khan W. A., Begum M., Salam M. A., Bardhan P. K., Islam M. R., Mahalanabis D. Comparative trial of five antimicrobial compounds in the treatment of cholera in adults. Trans R Soc Trop Med Hyg. 1995 Jan-Feb;89(1):103–106. doi: 10.1016/0035-9203(95)90675-4. [DOI] [PubMed] [Google Scholar]
  41. Koch R. An Address on Cholera and its Bacillus. Br Med J. 1884 Aug 30;2(1235):403–407. doi: 10.1136/bmj.2.1235.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Li M., McCann J. D., Anderson M. P., Clancy J. P., Liedtke C. M., Nairn A. C., Greengard P., Welsch M. J. Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science. 1989 Jun 16;244(4910):1353–1356. doi: 10.1126/science.2472006. [DOI] [PubMed] [Google Scholar]
  43. Mauerer U. R., Boulpaep E. L., Segal A. S. Regulation of an inwardly rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule. J Gen Physiol. 1998 Jan;111(1):161–180. doi: 10.1085/jgp.111.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moss J., Vaughan M. Guanine nucleotide-binding proteins (G proteins) in activation of adenylyl cyclase: lessons learned from cholera and "travelers' diarrhea". J Lab Clin Med. 1989 Mar;113(3):258–268. [PubMed] [Google Scholar]
  45. Moss J., Vaughan M. Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem. 1977 Apr 10;252(7):2455–2457. [PubMed] [Google Scholar]
  46. Mosser G., Mallouh V., Brisson A. A 9 A two-dimensional projected structure of cholera toxin B-subunit-GM1 complexes determined by electron crystallography. J Mol Biol. 1992 Jul 5;226(1):23–28. doi: 10.1016/0022-2836(92)90120-9. [DOI] [PubMed] [Google Scholar]
  47. Murayama T., Tsai S. C., Adamik R., Moss J., Vaughan M. Effects of temperature on ADP-ribosylation factor stimulation of cholera toxin activity. Biochemistry. 1993 Jan 19;32(2):561–566. doi: 10.1021/bi00053a022. [DOI] [PubMed] [Google Scholar]
  48. Nilsson O., Cassuto J., Larsson P. A., Jodal M., Lidberg P., Ahlman H., Dahlström A., Lundgren O. 5-Hydroxytryptamine and cholera secretion: a histochemical and physiological study in cats. Gut. 1983 Jun;24(6):542–548. doi: 10.1136/gut.24.6.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nocerino A., Iafusco M., Guandalini S. Cholera toxin-induced small intestinal secretion has a secretory effect on the colon of the rat. Gastroenterology. 1995 Jan;108(1):34–39. doi: 10.1016/0016-5085(95)90005-5. [DOI] [PubMed] [Google Scholar]
  50. Noda M., Tsai S. C., Adamik R., Moss J., Vaughan M. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta. 1990 May 16;1034(2):195–199. doi: 10.1016/0304-4165(90)90076-9. [DOI] [PubMed] [Google Scholar]
  51. Price S. R., Welsh C. F., Haun R. S., Stanley S. J., Moss J., Vaughan M. Effects of phospholipid and GTP on recombinant ADP-ribosylation factors (ARFs). Molecular basis for differences in requirements for activity of mammalian ARFs. J Biol Chem. 1992 Sep 5;267(25):17766–17772. [PubMed] [Google Scholar]
  52. RIKLIS E., QUASTEL J. H. Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol. 1958 Mar;36(3):347–362. [PubMed] [Google Scholar]
  53. Rodman D. M., Zamudio S. The cystic fibrosis heterozygote--advantage in surviving cholera? Med Hypotheses. 1991 Nov;36(3):253–258. doi: 10.1016/0306-9877(91)90144-n. [DOI] [PubMed] [Google Scholar]
  54. Romeo G., Devoto M., Galietta L. J. Why is the cystic fibrosis gene so frequent? Hum Genet. 1989 Dec;84(1):1–5. doi: 10.1007/BF00210660. [DOI] [PubMed] [Google Scholar]
  55. Ross E. M., Gilman A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interactions of solubilized components with receptor-replete membranes. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3715–3719. doi: 10.1073/pnas.74.9.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rotter J. I., Diamond J. M. What maintains the frequencies of human genetic diseases? Nature. 1987 Sep 24;329(6137):289–290. doi: 10.1038/329289a0. [DOI] [PubMed] [Google Scholar]
  57. Schiller L. R., Santa Ana C. A., Porter J., Fordtran J. S. Glucose-stimulated sodium transport by the human intestine during experimental cholera. Gastroenterology. 1997 May;112(5):1529–1535. doi: 10.1016/s0016-5085(97)70034-9. [DOI] [PubMed] [Google Scholar]
  58. Segal A. S., Boulpaep E. L., Maunsbach A. B. A novel preparation of dissociated renal proximal tubule cells that maintain epithelial polarity in suspension. Am J Physiol. 1996 Jun;270(6 Pt 1):C1843–C1863. doi: 10.1152/ajpcell.1996.270.6.C1843. [DOI] [PubMed] [Google Scholar]
  59. Segal A. S. Salty language is confusing. Hosp Pract (1995) 1996 Oct 15;31(10):81–84. doi: 10.1080/21548331.1996.11443363. [DOI] [PubMed] [Google Scholar]
  60. Sixma T. K., Pronk S. E., Kalk K. H., Wartna E. S., van Zanten B. A., Witholt B., Hol W. G. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature. 1991 May 30;351(6325):371–377. doi: 10.1038/351371a0. [DOI] [PubMed] [Google Scholar]
  61. Spangler B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev. 1992 Dec;56(4):622–647. doi: 10.1128/mr.56.4.622-647.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Stryer L., Bourne H. R. G proteins: a family of signal transducers. Annu Rev Cell Biol. 1986;2:391–419. doi: 10.1146/annurev.cb.02.110186.002135. [DOI] [PubMed] [Google Scholar]
  63. Tamplin M. L., Colwell R. R., Hall S., Kogure K., Strichartz G. R. Sodium-channel inhibitors produced by enteropathogenic Vibrio cholerae and Aeromonas hydrophila. Lancet. 1987 Apr 25;1(8539):975–975. doi: 10.1016/s0140-6736(87)90317-5. [DOI] [PubMed] [Google Scholar]
  64. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A. 1987 May;84(9):2833–2837. doi: 10.1073/pnas.84.9.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Toyoshige M., Okuya S., Rebois R. V. Choleragen catalyzes ADP-ribosylation of the stimulatory G protein heterotrimer but not its free alpha-subunit. Biochemistry. 1994 Apr 26;33(16):4865–4871. doi: 10.1021/bi00182a014. [DOI] [PubMed] [Google Scholar]
  66. Trucksis M., Galen J. E., Michalski J., Fasano A., Kaper J. B. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5267–5271. doi: 10.1073/pnas.90.11.5267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tsai S. C., Noda M., Adamik R., Moss J., Vaughan M. Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5139–5142. doi: 10.1073/pnas.84.15.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tsuchiya M., Price S. R., Tsai S. C., Moss J., Vaughan M. Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem. 1991 Feb 15;266(5):2772–2777. [PubMed] [Google Scholar]
  69. Van Heyningen W. E., Carpenter C. C., Pierce N. F., Greenough W. B., 3rd Deactivation of cholera toxin by ganglioside. J Infect Dis. 1971 Oct;124(4):415–418. doi: 10.1093/infdis/124.4.415. [DOI] [PubMed] [Google Scholar]
  70. Weissman J. B., DeWitt W. E., Thompson J., Muchnick C. N., Portnoy B. L., Feeley J. C., Gangarosa E. J. A case of cholera in Texas, 1973. Am J Epidemiol. 1974 Dec;100(6):487–498. doi: 10.1093/oxfordjournals.aje.a112061. [DOI] [PubMed] [Google Scholar]
  71. Welsh M. J., Anderson M. P., Rich D. P., Berger H. A., Denning G. M., Ostedgaard L. S., Sheppard D. N., Cheng S. H., Gregory R. J., Smith A. E. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron. 1992 May;8(5):821–829. doi: 10.1016/0896-6273(92)90196-k. [DOI] [PubMed] [Google Scholar]
  72. Wright S. W., Morton N. E. Genetic studies on cystic fibrosis in Hawaii. Am J Hum Genet. 1968 Mar;20(2):157–169. [PMC free article] [PubMed] [Google Scholar]
  73. Zhang R. G., Scott D. L., Westbrook M. L., Nance S., Spangler B. D., Shipley G. G., Westbrook E. M. The three-dimensional crystal structure of cholera toxin. J Mol Biol. 1995 Aug 25;251(4):563–573. doi: 10.1006/jmbi.1995.0456. [DOI] [PubMed] [Google Scholar]
  74. Zhang R. G., Westbrook M. L., Westbrook E. M., Scott D. L., Otwinowski Z., Maulik P. R., Reed R. A., Shipley G. G. The 2.4 A crystal structure of cholera toxin B subunit pentamer: choleragenoid. J Mol Biol. 1995 Aug 25;251(4):550–562. doi: 10.1006/jmbi.1995.0455. [DOI] [PubMed] [Google Scholar]

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

RESOURCES