Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1991 Jun;59(6):2063–2069. doi: 10.1128/iai.59.6.2063-2069.1991

Characterization and molecular cloning of a Cu/Zn superoxide dismutase from the human parasite Onchocerca volvulus.

K J Henkle 1, E Liebau 1, S Müller 1, B Bergmann 1, R D Walter 1
PMCID: PMC257966  PMID: 2037366

Abstract

Evidence suggests that the helminth antioxidant enzyme superoxide dismutase (SOD) may play a role in parasite's defense against the cellular immune mechanisms of the host. In order to investigate this for the human parasite Onchocerca volvulus, the enzyme activity was characterized, the release of SOD by the parasite was examined, and a complete cDNA encoding the O. volvulus SOD was identified. The SOD activity in adult O. volvulus was found to be 8.1 +/- 4.2 U/mg of protein. A Cu/Zn-containing enzyme was demonstrated by its sensitivity towards cyanide, azide, and hydrogen peroxide. Isoelectric focusing, combined with an enzyme activity assay, revealed two activities at pI 6.8 and 7.6, with both activities inhibited by KCN. Adult parasites, maintained in vitro, released SOD into the culture medium, which was detected by enzyme activity. In parallel, lactate production was measured to ensure the viability of the parasite. Oligonucleotides (based upon conserved sequences in the SOD genes of other organisms) and the polymerase chain reaction were used to identify a portion of the SOD gene from O. volvulus genomic DNA. A cDNA library was constructed in lambda unizapII and screened with the genomic polymerase chain reaction fragment. A complete cDNA encoding the Cu/Zn SOD was identified, and its nucleotide sequence was determined. Southern blot hybridization experiments indicated that the Cu/Zn SOD is encoded by a single-copy gene with at least one intron.

Full text

PDF
2063

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias A. E., Walter R. D. Plasmodium falciparum: association with erythrocytic superoxide dismutase. J Protozool. 1988 Aug;35(3):348–351. doi: 10.1111/j.1550-7408.1988.tb04104.x. [DOI] [PubMed] [Google Scholar]
  2. Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975 Apr 25;250(8):2801–2807. [PubMed] [Google Scholar]
  3. Bannister J. V., Bannister W. H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–180. doi: 10.3109/10409238709083738. [DOI] [PubMed] [Google Scholar]
  4. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  5. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Callahan H. L., Crouch R. K., James E. R. Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitol Today. 1988 Aug;4(8):218–225. doi: 10.1016/0169-4758(88)90162-7. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Flohé L., Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104. doi: 10.1016/s0076-6879(84)05013-8. [DOI] [PubMed] [Google Scholar]
  11. Getzoff E. D., Tainer J. A., Weiner P. K., Kollman P. A., Richardson J. S., Richardson D. C. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature. 1983 Nov 17;306(5940):287–290. doi: 10.1038/306287a0. [DOI] [PubMed] [Google Scholar]
  12. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  13. Hallewell R. A., Masiarz F. R., Najarian R. C., Puma J. P., Quiroga M. R., Randolph A., Sanchez-Pescador R., Scandella C. J., Smith B., Steimer K. S. Human Cu/Zn superoxide dismutase cDNA: isolation of clones synthesising high levels of active or inactive enzyme from an expression library. Nucleic Acids Res. 1985 Mar 25;13(6):2017–2034. doi: 10.1093/nar/13.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henkle K. J., Cook G. A., Foster L. A., Engman D. M., Bobek L. A., Cain G. D., Donelson J. E. The gene family encoding eggshell proteins of Schistosoma japonicum. Mol Biochem Parasitol. 1990 Aug;42(1):69–82. doi: 10.1016/0166-6851(90)90114-2. [DOI] [PubMed] [Google Scholar]
  15. Hjalmarsson K., Marklund S. L., Engström A., Edlund T. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6340–6344. doi: 10.1073/pnas.84.18.6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leid R. W., Suquet C. M. A superoxide dismutase of metacestodes of Taenia taeniaeformis. Mol Biochem Parasitol. 1986 Mar;18(3):301–311. doi: 10.1016/0166-6851(86)90087-3. [DOI] [PubMed] [Google Scholar]
  17. Mazingue C., Camus D., Dessaint J. P., Capron M., Capron A. In vitro and in vivo inhibition of mast cell degranulation by a factor from Schistosoma mansoni. Int Arch Allergy Appl Immunol. 1980;63(2):178–189. doi: 10.1159/000232624. [DOI] [PubMed] [Google Scholar]
  18. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  19. Murray H. W., Juangbhanich C. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):950–964. doi: 10.1084/jem.150.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray H. W. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med. 1981 May 1;153(5):1302–1315. doi: 10.1084/jem.153.5.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nathan C., Nogueira N., Juangbhanich C., Ellis J., Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med. 1979 May 1;149(5):1056–1068. doi: 10.1084/jem.149.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  23. Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1159–1163. doi: 10.1073/pnas.77.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rhoads M. L. Trichinella spiralis: identification and purification of superoxide dismutase. Exp Parasitol. 1983 Aug;56(1):41–54. doi: 10.1016/0014-4894(83)90095-4. [DOI] [PubMed] [Google Scholar]
  25. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  26. Salin M. L., McCord J. M. Free radicals and inflammation. Protection of phagocytosine leukocytes by superoxide dismutase. J Clin Invest. 1975 Nov;56(5):1319–1323. doi: 10.1172/JCI108208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schulz-Key H., Albiez E. J., Büttner D. W. Isolation of living adult Onchocerca volvulus from nodules. Tropenmed Parasitol. 1977 Dec;28(4):428–430. [PubMed] [Google Scholar]
  28. Simurda M. C., van Keulen H., Rekosh D. M., LoVerde P. T. Schistosoma mansoni: identification and analysis of an mRNA and a gene encoding superoxide dismutase (Cu/Zn). Exp Parasitol. 1988 Oct;67(1):73–84. doi: 10.1016/0014-4894(88)90010-0. [DOI] [PubMed] [Google Scholar]
  29. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  30. Suquet C., Green-Edwards C., Leid R. W. Isolation and partial characterization of a Taenia taeniaeformis metacestode proteinase inhibitor. Int J Parasitol. 1984 Apr;14(2):165–172. doi: 10.1016/0020-7519(84)90044-4. [DOI] [PubMed] [Google Scholar]
  31. Tainer J. A., Getzoff E. D., Richardson J. S., Richardson D. C. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983 Nov 17;306(5940):284–287. doi: 10.1038/306284a0. [DOI] [PubMed] [Google Scholar]
  32. Walter R. D. Preparation and shipping of Onchocerca volvulus material. Trop Med Parasitol. 1988 Dec;39 (Suppl 4):447–447. [PubMed] [Google Scholar]
  33. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
  34. Wittich R. M., Walter R. D. Onchocerca volvulus: partial glucose catabolism via fumarate and succinate. Exp Parasitol. 1987 Dec;64(3):517–518. doi: 10.1016/0014-4894(87)90067-1. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES