Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1990 May;58(5):1355–1359. doi: 10.1128/iai.58.5.1355-1359.1990

Isolation of Neisseria meningitidis mutants deficient in class 1 (porA) and class 3 (porB) outer membrane proteins.

J Tommassen 1, P Vermeij 1, M Struyvé 1, R Benz 1, J T Poolman 1
PMCID: PMC258632  PMID: 2157669

Abstract

The class 1 major outer membrane protein of Neisseria meningitidis is a serious candidate for a meningococcal vaccine. To facilitate studies on the function of this protein, mutants were isolated that lacked this protein or the structurally related class 3 protein. These mutants were obtained by using the antibody-dependent bactericidal action of the complement system. The class 1 protein-deficient strain grew normally in vitro, whereas growth of the class 3 protein-deficient strain was slightly retarded. The class 3 protein-deficient strain displayed increased resistance to the antibiotics tetracycline and cefsulodin, which is consistent with the proposed role of the protein as a pore-forming protein. The class 1 protein was purified to homogeneity from the class 3 protein-deficient strain. Lipid bilayer experiments revealed that this protein also formed pores. The class 1 protein pores were cation selective.

Full text

PDF
1355

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archibald F. S., DeVoe I. W. Iron in Neisseria meningitidis: minimum requirements, effects of limitation, and characteristics of uptake. J Bacteriol. 1978 Oct;136(1):35–48. doi: 10.1128/jb.136.1.35-48.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlow A. K., Heckels J. E., Clarke I. N. The class 1 outer membrane protein of Neisseria meningitidis: gene sequence and structural and immunological similarities to gonococcal porins. Mol Microbiol. 1989 Feb;3(2):131–139. doi: 10.1111/j.1365-2958.1989.tb01802.x. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Janko K., Boos W., Läuger P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1978 Aug 17;511(3):305–319. doi: 10.1016/0005-2736(78)90269-9. [DOI] [PubMed] [Google Scholar]
  4. Benz R., Janko K., Läuger P. Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1979 Mar 8;551(2):238–247. doi: 10.1016/0005-2736(89)90002-3. [DOI] [PubMed] [Google Scholar]
  5. Benz R., Schmid A., Hancock R. E. Ion selectivity of gram-negative bacterial porins. J Bacteriol. 1985 May;162(2):722–727. doi: 10.1128/jb.162.2.722-727.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Finne J., Leinonen M., Mäkelä P. H. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet. 1983 Aug 13;2(8346):355–357. doi: 10.1016/s0140-6736(83)90340-9. [DOI] [PubMed] [Google Scholar]
  7. Frasch C. E., Tsai C. M., Mocca L. F. Outer membrane proteins of Neisseria meningitidis: structure and importance in meningococcal disease. Clin Invest Med. 1986;9(2):101–107. [PubMed] [Google Scholar]
  8. Frasch C. E., Zollinger W. D., Poolman J. T. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis. 1985 Jul-Aug;7(4):504–510. doi: 10.1093/clinids/7.4.504. [DOI] [PubMed] [Google Scholar]
  9. Hankins W. A., Gwaltney J. M., Jr, Hendley J. O., Farquhar J. D., Samuelson J. S. Clinical and serological evaluation of a meningococcal polysaccharide vaccine groups A, C, Y, and W135. Proc Soc Exp Biol Med. 1982 Jan;169(1):54–57. doi: 10.3181/00379727-169-41306. [DOI] [PubMed] [Google Scholar]
  10. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. doi: 10.1016/0014-5793(75)80272-9. [DOI] [PubMed] [Google Scholar]
  11. Lugtenberg B., Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983 Mar 21;737(1):51–115. doi: 10.1016/0304-4157(83)90014-x. [DOI] [PubMed] [Google Scholar]
  12. Lynch E. C., Blake M. S., Gotschlich E. C., Mauro A. Studies of Porins: Spontaneously Transferred from Whole Cells and Reconstituted from Purified Proteins of Neisseria gonorrhoeae and Neisseria meningitidis. Biophys J. 1984 Jan;45(1):104–107. doi: 10.1016/S0006-3495(84)84127-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lytton E. J., Blake M. S. Isolation and partial characterization of the reduction-modifiable protein of Neisseria gonorrhoeae. J Exp Med. 1986 Nov 1;164(5):1749–1759. doi: 10.1084/jem.164.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mauro A., Blake M., Labarca P. Voltage gating of conductance in lipid bilayers induced by porin from outer membrane of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1071–1075. doi: 10.1073/pnas.85.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murakami K., Gotschlich E. C., Seiff M. E. Cloning and characterization of the structural gene for the class 2 protein of Neisseria meningitidis. Infect Immun. 1989 Aug;57(8):2318–2323. doi: 10.1128/iai.57.8.2318-2323.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Overbeeke N., Lugtenberg B. Expression of outer membrane protein e of Escherichia coli K12 by phosphate limitation. FEBS Lett. 1980 Apr 7;112(2):229–232. doi: 10.1016/0014-5793(80)80186-4. [DOI] [PubMed] [Google Scholar]
  18. Peltola H., Safary A., Käyhty H., Karanko V., André F. E. Evaluation of two tetravalent (ACYW135) meningococcal vaccines in infants and small children: a clinical study comparing immunogenicity of O-acetyl-negative and O-acetyl-positive group C polysaccharides. Pediatrics. 1985 Jul;76(1):91–96. [PubMed] [Google Scholar]
  19. Poolman J. T., Timmermans H. A., Teerlink T., Seid R. C., Jr Purification, cyanogen bromide cleavage, and amino terminus sequencing of class 1 and class 3 outer membrane proteins of meningococci. Infect Immun. 1989 Mar;57(3):1005–1007. doi: 10.1128/iai.57.3.1005-1007.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poolman J. T., de Marie S., Zanen H. C. Variability of low-molecular-weight, heat-modifiable outer membrane proteins of Neisseria meningitidis. Infect Immun. 1980 Dec;30(3):642–648. doi: 10.1128/iai.30.3.642-648.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rice P. A., Vayo H. E., Tam M. R., Blake M. S. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J Exp Med. 1986 Nov 1;164(5):1735–1748. doi: 10.1084/jem.164.5.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saukkonen K., Leinonen M., Abdillahi H., Poolman J. T. Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine. 1989 Aug;7(4):325–328. doi: 10.1016/0264-410x(89)90194-1. [DOI] [PubMed] [Google Scholar]
  23. Spierings G., Hofstra H., Huis in'T Veld J., Hoekstra W., Tommassen J. Development of enterobacterium-specific oligonucleotide probes based on the surface-exposed regions of outer membrane proteins. Appl Environ Microbiol. 1989 Dec;55(12):3250–3252. doi: 10.1128/aem.55.12.3250-3252.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tommassen J., Lugtenberg B. Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase. J Bacteriol. 1980 Jul;143(1):151–157. doi: 10.1128/jb.143.1.151-157.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wyle F. A., Artenstein M. S., Brandt B. L., Tramont E. C., Kasper D. L., Altieri P. L., Berman S. L., Lowenthal J. P. Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis. 1972 Nov;126(5):514–521. doi: 10.1093/infdis/126.5.514. [DOI] [PubMed] [Google Scholar]
  26. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Ley P., Amesz H., Tommassen J., Lugtenberg B. Monoclonal antibodies directed against the cell-surface-exposed part of PhoE pore protein of the Escherichia coli K-12 outer membrane. Eur J Biochem. 1985 Mar 1;147(2):401–407. doi: 10.1111/j.1432-1033.1985.tb08764.x. [DOI] [PubMed] [Google Scholar]
  28. van der Ley P., Kuipers O., Tommassen J., Lugtenberg B. O-antigenic chains of lipopolysaccharide prevent binding of antibody molecules to an outer membrane pore protein in Enterobacteriaceae. Microb Pathog. 1986 Feb;1(1):43–49. doi: 10.1016/0882-4010(86)90030-6. [DOI] [PubMed] [Google Scholar]
  29. van der Ley P., Struyvé M., Tommassen J. Topology of outer membrane pore protein PhoE of Escherichia coli. Identification of cell surface-exposed amino acids with the aid of monoclonal antibodies. J Biol Chem. 1986 Sep 15;261(26):12222–12225. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES