Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2006 Oct 5;32(5):393–401. doi: 10.1007/s10867-006-9023-y

Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive

Anika S Mostaert 1, Michael J Higgins 1, Takeshi Fukuma 1, Fabio Rindi 2, Suzanne P Jarvis 1,
PMCID: PMC2586611  PMID: 19669445

Abstract

Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated β-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives.

Key words: amyloid, natural adhesive, atomic force microscopy, adhesion, nanoscale mechanics, force measurements, extracellular polymeric substances, algae, biopolymer

References

  • 1.Fletcher, R., Callow, M.E.: Settlement, attachment and establishment of marine algal spores. Br. Phycol. J. 27, 303–329 (1992) [DOI]
  • 2.Smith, B.L., Schäffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999) [DOI]
  • 3.Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994) [DOI] [PubMed]
  • 4.Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997) [DOI] [PubMed]
  • 5.Tskhovrebova, L., Trinick, J., Sleep, J.A., Simmons, R.M.: Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997) [DOI] [PubMed]
  • 6.Oberhauser, A.F., Marszalek, P.E., Erickson, H.P., Fernandez, J.M.: The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998) [DOI] [PubMed]
  • 7.Wetherbee, R., Lind, J.L., Burke, J., Quatrano, R.S.: The first kiss: establishment and control of initial adhesion by raphid diatoms. J. Phycol. 34, 9–15 (1998) [DOI]
  • 8.Brockwell, D.J., Beddard, G.S., Paci, E., West, D.K., Olmsted, P.D., Smith, D.A., Radford, S.E.: Mechanically unfolding the small, topologically simple protein L. Biophys. J. 89, 506–519 (2005) [DOI] [PMC free article] [PubMed]
  • 9.Bemis, J.E., Akhremitchev, B.B., Walker, G.C.: Single polymer chain elongation by atomic force microscopy. Langmuir 15, 2799–2805 (1999) [DOI]
  • 10.Waite, J.H., Qin, X.: Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40, 2887–2893 (2001) [DOI] [PubMed]
  • 11.Fukuma, T., Mostaert, A.S., Jarvis, S.P.: Explanation for the mechanical strength of amyloid fibrils. Tribol. Lett. (2006), dx.doi.org/10.1007/s11249-006-9086-8.
  • 12.Bateman, A., Lachlan, C., Durbin, R., Finn, R.D., Volker, H., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L.L., Studholme, D.J., Yeats, C., Eddy, S.R.: The Pfam protein families database. Nucleic Acids Res. (Database issue) 32, D138–D141 (2004) [DOI] [PMC free article] [PubMed]
  • 13.Dobson, C.M.: Protein folding and misfolding. Nature 426, 884–890 (2003) [DOI] [PubMed]
  • 14.Vowles, G.H., Francis, R.J.: Amyloid. In: Bancroft, J.D., Gamble, M. (eds.) Theory and Practice of Histological Techniques, 5th ed., pp. 303–324. Churchill Livingstone, Harcourt, London, UK (2002)
  • 15.Sipe, J.D.: Amyloid Proteins: The Beta Sheet Conformation and Disease. Wiley, Weinheim, Germany (2005)
  • 16.Baxa, U., Speransky, V., Stevens, A.C., Wickner, R.B.: Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl Acad. Sci. U.S.A. 99, 5253–5260 (2002) [DOI] [PMC free article] [PubMed]
  • 17.Fowler, D.M., Koulov, A.V., Alory-Jost, C., Marks, M.S., Balch, W.E., Kelly, J.W.: Functional Amyloid formation within mammalian tissue. PLoS Biol. 4, 100–107 (2006) [DOI] [PMC free article] [PubMed]
  • 18.Guiry, M.D., Cunningham, E.M.: Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23, 357–367 (1984)
  • 19.Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999) [DOI]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES