Abstract
Intestinal epithelial cells migrating across a mucosal defect are generally described as dedifferentiated, a term that suggests a loss of regulatory biology. Since cell biology may be more readily studied in established cell lines than in vivo, a model is developed using the human Caco-2 intestinal epithelial cell migrating across matrix proteins. This resembles in vivo models of mucosal healing in its sheet migration and loss of the brush border enzymes, which are conventional markers for intestinal epithelial differentiation. Immunohistochemical studies of migrating Caco-2 cells suggest, however, that the rearrangements of cytoskeletal, cell-cell and cell-matrix proteins during migration are not random but seem adapted to the migratory state. Indeed, Caco-2 migration may be substantially regulated by a variety of physiologic and pharmacologic stimuli and differentiation, measured by the specific activity of the intestinal epithelial brush border enzymes alkaline phosphatase and dipeptidyl dipeptidase, may be independently pharmacologically programmed during the stimulation or inhibition of cell motility.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basson M. D., Beidler D. R., Turowski G., Zarif A., Modlin I. M., Jena B. P., Madri J. A. Effect of tyrosine kinase inhibition on basal and epidermal growth factor-stimulated human Caco-2 enterocyte sheet migration and proliferation. J Cell Physiol. 1994 Sep;160(3):491–501. doi: 10.1002/jcp.1041600312. [DOI] [PubMed] [Google Scholar]
- Basson M. D., Hong F., Emenaker N. J. Specific modulation of intestinal epithelial brush border enzyme expression by a phorbol ester. J Surg Res. 1995 Jul;59(1):121–126. doi: 10.1006/jsre.1995.1142. [DOI] [PubMed] [Google Scholar]
- Basson M. D., Hong F. Modulation of human CACO-2 intestinal epithelial cell phenotype by protein kinase C inhibitors. Cell Biol Int. 1995 Dec;19(12):1025–1032. doi: 10.1006/cbir.1995.1045. [DOI] [PubMed] [Google Scholar]
- Basson M. D., Hong F. Regulation of human Caco-2 intestinal epithelial brush border enzyme activity by cyclic nucleotides. Cancer Lett. 1996 Feb 6;99(2):155–160. doi: 10.1016/0304-3835(95)04058-7. [DOI] [PubMed] [Google Scholar]
- Basson M. D., Modlin I. M., Madri J. A. Human enterocyte (Caco-2) migration is modulated in vitro by extracellular matrix composition and epidermal growth factor. J Clin Invest. 1992 Jul;90(1):15–23. doi: 10.1172/JCI115828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basson M. D. Mucosal healing and adaptation in the small intestine. Curr Opin Gen Surg. 1994:138–146. [PubMed] [Google Scholar]
- Basson M. D., Turowski G., Emenaker N. J. Regulation of human (Caco-2) intestinal epithelial cell differentiation by extracellular matrix proteins. Exp Cell Res. 1996 Jun 15;225(2):301–305. doi: 10.1006/excr.1996.0180. [DOI] [PubMed] [Google Scholar]
- Buse P., Woo P. L., Alexander D. B., Cha H. H., Reza A., Sirota N. D., Firestone G. L. Transforming growth factor-alpha abrogates glucocorticoid-stimulated tight junction formation and growth suppression in rat mammary epithelial tumor cells. J Biol Chem. 1995 Mar 24;270(12):6505–6514. doi: 10.1074/jbc.270.12.6505. [DOI] [PubMed] [Google Scholar]
- Feil W., Lacy E. R., Wong Y. M., Burger D., Wenzl E., Starlinger M., Schiessel R. Rapid epithelial restitution of human and rabbit colonic mucosa. Gastroenterology. 1989 Sep;97(3):685–701. doi: 10.1016/0016-5085(89)90640-9. [DOI] [PubMed] [Google Scholar]
- Folkman J., Szabo S., Stovroff M., McNeil P., Li W., Shing Y. Duodenal ulcer. Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann Surg. 1991 Oct;214(4):414–427. doi: 10.1097/00000658-199110000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giebel J., Thiedemann K. U., Schwenk M. Gastric mucosal repair in vitro. J Clin Gastroenterol. 1991;13 (Suppl 1):S58–S64. doi: 10.1097/00004836-199112001-00010. [DOI] [PubMed] [Google Scholar]
- Korman M. G., Bolin T. D., Szabo S., Hunt R. H., Marks I. N., Glise H. Sucralfate: the Bangkok review. J Gastroenterol Hepatol. 1994 Jul-Aug;9(4):412–415. doi: 10.1111/j.1440-1746.1994.tb01264.x. [DOI] [PubMed] [Google Scholar]
- Kurihara H., Anderson J. M., Farquhar M. G. Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Am J Physiol. 1995 Mar;268(3 Pt 2):F514–F524. doi: 10.1152/ajprenal.1995.268.3.F514. [DOI] [PubMed] [Google Scholar]
- Madri J. A., Basson M. D. Extracellular matrix-cell interactions: dynamic modulators of cell, tissue and organism structure and function. Lab Invest. 1992 May;66(5):519–521. [PubMed] [Google Scholar]
- Madri J. A., Pratt B. M., Yannariello-Brown J. Matrix-driven cell size change modulates aortic endothelial cell proliferation and sheet migration. Am J Pathol. 1988 Jul;132(1):18–27. [PMC free article] [PubMed] [Google Scholar]
- Moore R., Carlson S., Madara J. L. Rapid barrier restitution in an in vitro model of intestinal epithelial injury. Lab Invest. 1989 Feb;60(2):237–244. [PubMed] [Google Scholar]
- Nagashima R. Development and characteristics of sucralfate. J Clin Gastroenterol. 1981;3(Suppl 2):103–110. [PubMed] [Google Scholar]
- Negulescu P. A., Reenstra W. W., Machen T. E. Intracellular Ca requirements for stimulus-secretion coupling in parietal cell. Am J Physiol. 1989 Feb;256(2 Pt 1):C241–C251. doi: 10.1152/ajpcell.1989.256.2.C241. [DOI] [PubMed] [Google Scholar]
- Peterson M. D., Mooseker M. S. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci. 1992 Jul;102(Pt 3):581–600. doi: 10.1242/jcs.102.3.581. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmassmann A., Tarnawski A., Gerber H. A., Flogerzi B., Sanner M., Varga L., Halter F. Antacid provides better restoration of glandular structures within the gastric ulcer scar than omeprazole. Gut. 1994 Jul;35(7):896–904. doi: 10.1136/gut.35.7.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarnawski A., Hollander D., Gergely H. The mechanism of protective, therapeutic and prophylactic actions of sucralfate. Scand J Gastroenterol Suppl. 1987;140:7–13. [PubMed] [Google Scholar]
- Tarnawski A., Santos A. M., Hanke S., Stachura J., Douglass T. G., Sarfeh I. J. Quality of gastric ulcer healing. Is it influenced by antiulcer drugs? Scand J Gastroenterol Suppl. 1995;208:9–13. doi: 10.3109/00365529509107755. [DOI] [PubMed] [Google Scholar]
- Turowski G. A., Rashid Z., Hong F., Madri J. A., Basson M. D. Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines. Cancer Res. 1994 Nov 15;54(22):5974–5980. [PubMed] [Google Scholar]
- Van Itallie C. M., Balda M. S., Anderson J. M. Epidermal growth factor induces tyrosine phosphorylation and reorganization of the tight junction protein ZO-1 in A431 cells. J Cell Sci. 1995 Apr;108(Pt 4):1735–1742. doi: 10.1242/jcs.108.4.1735. [DOI] [PubMed] [Google Scholar]
- Watabe M., Nagafuchi A., Tsukita S., Takeichi M. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol. 1994 Oct;127(1):247–256. doi: 10.1083/jcb.127.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeomans N. D., Skeljo M. V. Repair and healing of established gastric mucosal injury. J Clin Gastroenterol. 1991;13 (Suppl 1):S37–S41. doi: 10.1097/00004836-199112001-00006. [DOI] [PubMed] [Google Scholar]