Abstract
Streptococcus gordonii exhibits a phase variation involving expression of high (Spp+) or low (Spp-) glucosyltransferase activity. The related bacterial accumulation on hydroxyapatite (HA) and saliva-coated HA surfaces was examined and found to be significant. Spp+ cells growing anaerobically in a defined medium utilize about 30% of the glucose available from sucrose to make insoluble glucans. These glucans formed cohesive masses on HA beads, which contained 80 to 90% of the total bacteria. The bacterial polymer mass had a volume of about 40 microns3 and contained more than 5 x 10(10) viable cells per cm3. In the absence of sucrose, the beads were saturated by 1 x 10(8) to 2 x 10(8) Spp+ cells. Spp- bacteria, which make 30-fold less glucan than do Spp+ bacteria, did not accumulate on surfaces in numbers significantly above the saturation level of 1 x 10(8) to 2 x 10(8) cells in the presence or absence of sucrose. Insoluble glucan synthesized by Spp+ cells from sucrose also enabled these bacteria to accumulate on saliva-coated HA seven times more effectively than the Spp- cells and 10 times more effectively than the Spp+ cells grown in medium without sucrose.
Full text
PDF![3523](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/8c234966ece9/iai00046-0191.png)
![3524](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/d877f4428d74/iai00046-0192.png)
![3525](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/4ccc4f5c0575/iai00046-0193.png)
![3526](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/ab859c09a120/iai00046-0194.png)
![3527](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/a284b85c1df4/iai00046-0195.png)
![3528](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/9b4d0cf5fb97/iai00046-0196.png)
![3529](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/aeb47e6b078a/iai00046-0197.png)
![3530](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e5/258916/70cd35ef3271/iai00046-0198.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appelbaum B., Golub E., Holt S. C., Rosan B. In vitro studies of dental plaque formation: adsorption of oral streptococci to hydroxyaptite. Infect Immun. 1979 Aug;25(2):717–728. doi: 10.1128/iai.25.2.717-728.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourgeau G., McBride B. C. Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus. Infect Immun. 1976 Apr;13(4):1228–1234. doi: 10.1128/iai.13.4.1228-1234.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchan R. A., Jenkinson H. F. Glucosyltransferase production by Streptococcus sanguis Challis and comparison with other oral streptococci. Oral Microbiol Immunol. 1990 Apr;5(2):63–71. doi: 10.1111/j.1399-302x.1990.tb00229.x. [DOI] [PubMed] [Google Scholar]
- Carlsson J., Grahnén H., Jonsson G., Wikner S. Establishment of Streptococcus sanguis in the mouths of infants. Arch Oral Biol. 1970 Dec;15(12):1143–1148. doi: 10.1016/0003-9969(70)90005-1. [DOI] [PubMed] [Google Scholar]
- Clark W. B., Bammann L. L., Gibbons R. J. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun. 1978 Mar;19(3):846–853. doi: 10.1128/iai.19.3.846-853.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan M. M., Parrish K., Kessler R. E., Pyle C., Jr, Taylor K. G., Ciardi J. E., Doyle R. J. Glucan-binding factor in saliva. Infect Immun. 1988 Nov;56(11):2912–2917. doi: 10.1128/iai.56.11.2912-2917.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons R. J. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res. 1989 May;68(5):750–760. doi: 10.1177/00220345890680050101. [DOI] [PubMed] [Google Scholar]
- Gibbons R. J., Houte J. V. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol. 1975;29:19–44. doi: 10.1146/annurev.mi.29.100175.000315. [DOI] [PubMed] [Google Scholar]
- Gibbons R. J., Keyes P. H. Inhibition of insoluble dextran synthesis, plaque formation and dental caries in hamsters by low molecular weight dextran. Arch Oral Biol. 1969 Jun;14(6):721–724. doi: 10.1016/0003-9969(69)90193-9. [DOI] [PubMed] [Google Scholar]
- Grahame D. A., Mayer R. M. The origin and composition of multiple forms of dextransucrase from Streptococcus sanguis. Biochim Biophys Acta. 1984 Apr 27;786(1-2):42–48. doi: 10.1016/0167-4838(84)90151-1. [DOI] [PubMed] [Google Scholar]
- Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson M. C., Curtiss R., 3rd Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun. 1990 Feb;58(2):464–470. doi: 10.1128/iai.58.2.464-470.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolenbrander P. E., Andersen R. N. Multigeneric aggregations among oral bacteria: a network of independent cell-to-cell interactions. J Bacteriol. 1986 Nov;168(2):851–859. doi: 10.1128/jb.168.2.851-859.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOE H., THEILADE E., JENSEN S. B. EXPERIMENTAL GINGIVITIS IN MAN. J Periodontol. 1965 May-Jun;36:177–187. doi: 10.1902/jop.1965.36.3.177. [DOI] [PubMed] [Google Scholar]
- Mayer R. M. Dextransucrase: a glucosyltransferase from Streptococcus sanguis. Methods Enzymol. 1987;138:649–661. doi: 10.1016/0076-6879(87)38059-0. [DOI] [PubMed] [Google Scholar]
- McIntire F. C., Vatter A. E., Baros J., Arnold J. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infect Immun. 1978 Sep;21(3):978–988. doi: 10.1128/iai.21.3.978-988.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niven C. F., Kiziuta Z., White J. C. Synthesis of a Polysaccharide from Sucrose by Streptococcus S.B.E. J Bacteriol. 1946 Jun;51(6):711–716. doi: 10.1128/jb.51.6.711-716.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nyvad B., Kilian M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 1990;24(4):267–272. doi: 10.1159/000261281. [DOI] [PubMed] [Google Scholar]
- Russell R. R. Use of triton X-100 to overcome the inhibition of fructosyltransferase by SDS. Anal Biochem. 1979 Aug;97(1):173–175. doi: 10.1016/0003-2697(79)90342-7. [DOI] [PubMed] [Google Scholar]
- Schachtele C. F., Harlander S. K., Bracke J. W., Ostrum L. C., Maltais J. A., Billings R. J. Streptococcus mutans dextransucrase: stimulation by phospholipids from human sera and oral fluids. Infect Immun. 1978 Dec;22(3):714–720. doi: 10.1128/iai.22.3.714-720.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tardif G., Sulavik M. C., Jones G. W., Clewell D. B. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun. 1989 Dec;57(12):3945–3948. doi: 10.1128/iai.57.12.3945-3948.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terleckyj B., Willett N. P., Shockman G. D. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. doi: 10.1128/iai.11.4.649-655.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YEMM E. W., WILLIS A. J. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 1954 Jul;57(3):508–514. doi: 10.1042/bj0570508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Loosdrecht M. C., Lyklema J., Norde W., Zehnder A. J. Influence of interfaces on microbial activity. Microbiol Rev. 1990 Mar;54(1):75–87. doi: 10.1128/mr.54.1.75-87.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]